[BioC] What wrong with my data using LIMMA

Naomi Altman naomi at stat.psu.edu
Mon Sep 5 03:59:49 CEST 2005


See this thread:  Re: [BioC] adjusted p-values for large number of genes...


At 08:53 PM 9/4/2005, weinong han wrote:
>Hi. List,
>
>17 samples(3 normal samples, 14 NPC tumor samples from different
>patients)
> >were used in my Affymetrix microarray experiments. The small size
> >microarrays were recommmended to be analyzed using LIMMA. After
>moderated
> >t statistic, I found the results were not so nice. please see
>attachment.
> >
> >What is wrong with my data? How to do next?
> >
> >Any advice and suggestions will be much appreciated.
> >
> >I am looking forward to your response
>
>
>
>
>
>
>Best Regards
>
>Han Weinong
>hanweinong at yahoo.com
>
>__________________________________________________
>
>
>
>
> > dir()
>  [1] "G05.CEL"    "G09.CEL"    "G10.CEL"    "G12.CEL"    "G15.CEL"
>  [6] "G19.CEL"    "GF.CEL"     "GM.CEL"     "H044.CEL"   "H05.CEL"
>[11] "H07.CEL"    "H10.CEL"    "H11.CEL"    "H14.CEL"    "hgu133acdf"
>[16] "N01.CEL"    "N02.CEL"    "N03.CEL"
> > library(limma)
> > library(affy)
>Loading required package: Biobase
>Loading required package: tools
>Welcome to Bioconductor
>          Vignettes contain introductory material.  To view,
>          simply type: openVignette()
>          For details on reading vignettes, see
>          the openVignette help page.
>Loading required package: reposTools
> > Data <- ReadAffy()
> > eset <- rma(Data)
>Background correcting
>Normalizing
>Calculating Expression
> > pData(eset)
>          sample
>G05.CEL       1
>G09.CEL       2
>G10.CEL       3
>G12.CEL       4
>G15.CEL       5
>G19.CEL       6
>GF.CEL        7
>GM.CEL        8
>H044.CEL      9
>H05.CEL      10
>H07.CEL      11
>H10.CEL      12
>H11.CEL      13
>H14.CEL      14
>N01.CEL      15
>N02.CEL      16
>N03.CEL      17
> > tissue <- 
> c("C","C","C","C","C","C","C","C","C","C","C","C","C","C","N","N","N")
> > design <- model.matrix(~factor(tissue))
> > colnames(design) <- c("C", "CvsN")
> > design
>    C CvsN
>1  1    0
>2  1    0
>3  1    0
>4  1    0
>5  1    0
>6  1    0
>7  1    0
>8  1    0
>9  1    0
>10 1    0
>11 1    0
>12 1    0
>13 1    0
>14 1    0
>15 1    1
>16 1    1
>17 1    1
>attr(,"assign")
>[1] 0 1
>attr(,"contrasts")
>attr(,"contrasts")$"factor(tissue)"
>[1] "contr.treatment"
>
>
> > fit <-lmFit(eset,design)
> > fit <-eBayes(fit)
> > options(digits=2)
> > topTable(fit,coef=2,n=50,adjust="fdr")
>                ID     M   A    t P.Value    B
>22193  78047_s_at  0.60 7.3  5.3    0.82 -3.4
>2594  203065_s_at -1.26 6.7 -5.0    0.82 -3.5
>10680 211245_x_at  0.58 4.9  4.7    1.00 -3.6
>17919 218554_s_at  0.59 4.7  4.5    1.00 -3.6
>9431  209945_s_at -0.67 6.1 -4.5    1.00 -3.6
>4556  205029_s_at  3.09 3.6  4.4    1.00 -3.6
>4557    205030_at  3.58 4.6  4.3    1.00 -3.6
>5845  206319_s_at  0.82 4.0  4.3    1.00 -3.7
>21838    36019_at  0.67 6.7  4.2    1.00 -3.7
>5209  205682_x_at  0.61 4.8  4.2    1.00 -3.7
>6791  207266_x_at -0.95 7.8 -4.0    1.00 -3.7
>21916    38447_at  0.66 7.3  4.0    1.00 -3.7
>21914    38340_at  0.59 6.3  3.9    1.00 -3.8
>16241   216871_at  0.59 3.4  3.9    1.00 -3.8
>982   201454_s_at -0.65 6.2 -3.9    1.00 -3.8
>22024    46256_at  0.62 7.2  3.9    1.00 -3.8
>7489  207978_s_at  0.47 4.3  3.8    1.00 -3.8
>4452    204925_at  0.48 5.0  3.8    1.00 -3.8
>7121    207600_at  0.48 5.5  3.7    1.00 -3.8
>12443 213060_s_at  1.41 6.0  3.7    1.00 -3.8
>1619    202091_at  0.51 3.3  3.7    1.00 -3.8
>9890    210412_at  0.53 3.5  3.6    1.00 -3.8
>21922  38707_r_at  0.45 7.8  3.6    1.00 -3.9
>2715    203187_at  0.59 5.8  3.6    1.00 -3.9
>3354    203827_at -0.99 5.5 -3.6    1.00 -3.9
>5340  205813_s_at  0.52 5.8  3.5    1.00 -3.9
>2445  202916_s_at -0.61 6.1 -3.5    1.00 -3.9
>18810   219446_at -0.68 5.9 -3.5    1.00 -3.9
>14010   214632_at -0.54 4.2 -3.4    1.00 -3.9
>2915    203388_at  0.46 6.2  3.4    1.00 -3.9
>21936    396_f_at  0.70 7.7  3.4    1.00 -3.9
>16292 216922_x_at  0.61 3.8  3.4    1.00 -3.9
>13378   213999_at  0.44 4.5  3.4    1.00 -3.9
>9642    210158_at  0.58 4.4  3.4    1.00 -3.9
>19117   219753_at  0.65 5.6  3.4    1.00 -3.9
>10820 211405_x_at  0.53 5.3  3.4    1.00 -3.9
>19242 219878_s_at -0.58 4.5 -3.4    1.00 -3.9
>3275  203748_x_at -0.90 7.9 -3.4    1.00 -3.9
>16554   217187_at  0.58 5.7  3.4    1.00 -3.9
>8627  209133_s_at  0.54 4.7  3.3    1.00 -3.9
>17983 218618_s_at -1.15 8.0 -3.3    1.00 -3.9
>20977   221615_at  0.50 3.7  3.3    1.00 -3.9
>18562   219198_at  0.54 5.7  3.3    1.00 -3.9
>19513   220149_at  0.58 4.8  3.3    1.00 -3.9
>1770    202242_at  1.04 5.4  3.3    1.00 -3.9
>10081 210616_s_at -0.56 8.4 -3.3    1.00 -3.9
>17995   218630_at  0.37 5.4  3.3    1.00 -3.9
>3018  203491_s_at -0.67 5.1 -3.3    1.00 -3.9
>10823 211410_x_at  0.56 5.3  3.3    1.00 -3.9
>16351 216981_x_at  0.57 6.3  3.3    1.00 -3.9
> >
>_______________________________________________
>Bioconductor mailing list
>Bioconductor at stat.math.ethz.ch
>https://stat.ethz.ch/mailman/listinfo/bioconductor

Naomi S. Altman                                814-865-3791 (voice)
Associate Professor
Dept. of Statistics                              814-863-7114 (fax)
Penn State University                         814-865-1348 (Statistics)
University Park, PA 16802-2111



More information about the Bioconductor mailing list