[BioC] Limma two group layout; two approaches but different results
Björn Usadel
usadel at mpimp-golm.mpg.de
Wed Nov 9 10:53:45 CET 2005
Hi all,
Refering to section 8.4 of limmas User guide (2 groups) I found a little
inconsistency (which might be a feature though),
when using only 2 versus 2 Affymetrix arrays and the two methods
proposed in the userguide. (differences versus contrasts)
Even though, the M values are perfectly the same, there a very
different p-values and different t-values.
There are still slight differences for 2 versus 3 arrays, and these
disappear with more slides. Is this a known behaviour?
Otherwise, maybe a warning should be issued.
And yes - taking 2 arrays per condition/genotype is standing on very
shaky ground, but that is not up for me to decide.
Method1
> toptable(fita,coef="MUvsWT",adjust="BH")
M t P.Value B
4901 3.007937 17.67274 0.04321081 2.022252
4634 3.810009 16.17843 0.04321081 1.897954
5365 -3.003438 -16.08612 0.04321081 1.889342
4282 3.263951 13.71665 0.05394461 1.620254
4900 2.820148 13.63034 0.05394461 1.608386
6224 2.557232 13.33234 0.05394461 1.566076
4609 -2.197100 -12.31159 0.06801382 1.403791
1388 -3.369013 -11.80720 0.07283498 1.312306
5217 2.703997 11.35791 0.07804811 1.223567
4902 2.184269 10.95941 0.08339903 1.138550
Method2 (using contrasts)
toptable(fit2,adjust="BH")
M t P.Value B
4901 3.0079369 49.70266 0.6066029 -1.427223
3141 -0.7710439 -35.26161 0.6066029 -1.448119
1359 -0.9824312 -28.13189 0.6066029 -1.471786
791 0.4815546 25.80750 0.6066029 -1.483894
5365 -3.0034379 -23.94627 0.6066029 -1.496136
4609 -2.1971003 -22.47249 0.6066029 -1.507965
885 0.3017316 18.37909 0.6066029 -1.556058
6224 2.5572321 18.22744 0.6066029 -1.558443
4899 0.6554947 17.48778 0.6066029 -1.570918
6037 0.6788083 17.38863 0.6066029 -1.572704
Here the code
(As data I used the data from section 11.3 where I simply took the
first two files for each genotype)
(http://visitor.ics.uci.edu/genex/cybert/tutorial/index.html)
###########################################################
library(affy)
library(limma)
#readin arrays
fns <- list.celfiles(path="C:/foo/bar/",full.names=TRUE)
abatch <- ReadAffy(filenames=fns)
#normalize using rma
eset<-rma(abatch)
#method1
design<-cbind(WT=c(1,1,1,1),MUvsWT=c(1,1,0,0))
fita <- lmFit(eset, design)
fita<-eBayes(fita)
toptable(fita,coef="MUvsWT",adjust="BH")
#method2
design<-cbind(WT=c(0,0,1,1),MU=c(1,1,0,0))
fit<-lmFit(eset,design)
cont.matrix <- makeContrasts( MUvsWT=MU-WT,levels=design)
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2)
toptable(fit2,adjust="BH")
###########################################################
Kind regards,
and thanks for your help,
Björn Usadel
MPI of Molecular Plant Physiology
PS There is also a little typo on page 39 of the User Guide instead of
design <- cbind(WT=c(1,1,0,0,0,MU=c(0,0,1,1,1))
it should be
design <- cbind(WT=c(1,1,0,0,0),MU=c(0,0,1,1,1))
More information about the Bioconductor
mailing list