Re: [BioC] F-tests for factorial effects - limma

Ramon Diaz-Uriarte rdiaz at cnio.es
Wed Jan 5 14:03:39 CET 2005


Dear Naomi and Gordon,

Just in case it helps someone else, I am attaching a more verbose version of 
the code snippet that Gordon sent, because I found the "diag(p)
[,attr(X,"assign")==3]" non-intuitive, so I called makeContrasts explicitly.


This is the example:
*****************************************************************
## treat is a factor with three levels; age is a continuous variable.

X <- model.matrix( ~ treat*age.centered)
fit <- lmFit(d.clean, X)
p <- ncol(X)
cont.ia <- diag(p)[,attr(d.trt.BY.age3,"assign")==3]
fit.ia <- eBayes(contrasts.fit(fit, cont.ia))


############# Using my more verbose apporach

X2 <- model.matrix( ~ treat*age.centered)
colnames(X2) <- c("Intercept", "Colon", "Mama",
                             "age", "Colon.by.age", "Mama.by.age")
contrasts.trt.BY.age <- makeContrasts(Colon.by.age,
                                      Mama.by.age,
                                      levels = X2)
fit2 <- lmFit(d.clean, X2)
fit.ia2 <- eBayes(contrasts.fit(fit2,
                                contrasts.trt.BY.age))

### We can of course do instead (which I like better)
X2 <- model.matrix(~ -1 + treat + age.centered +
                              treat*age.centered)
colnames(X2) <- c("Colon", "Mama", "Normal",
                  "age", "Colon.by.age", "Mama.by.age")
contrasts.trt.BY.age <- makeContrasts(Colon.by.age,
                                      Mama.by.age,
                                      levels = X2)

*************************************************

Best,


R.






On Wednesday 22 December 2004 14:23, Gordon K Smyth wrote:
> > Date: Tue, 21 Dec 2004 17:21:19 -0500
> > From: Naomi Altman <naomi at stat.psu.edu>
> > Subject: [BioC] F-tests for factorial effects - limma
> > To: bioconductor at stat.math.ethz.ch
> >
> > I am analyzing a 2-factor factorial Affy experiment, with 3 d.f. for each
> > factor.
> >
> > I would like to get the F-tests for the main effects and interactions
> > using limma.
> >
> > I have computed all the contrasts, and got the t-tests (both unadjusted
> > and eBayes).  I do know how to combine these into F-tests "by hand" but I
> > could not figure out if there was a simple way to do this using limma.
>
> limma doesn't have any easy way to deal with main effects and interactions,
> at least not with main effects, interactions are actually simpler.  I
> haven't implemented this because I've never been able to figure out what
> one would do with these things in a microarray context.
>
> To compute F-tests for main effects and interaction, the easiest way would
> probably be to compute the SS for main effects and interactions by
> non-limma means, then use shrinkVar() to adjust the residual mean squares,
> i.e., the F-statistic denominators.
>
> If you only want F-tests for interactions, the following code would work:
>
> X <- model.matrix(~a*b)
> fit <- lmFit(eset, X)
> p <- ncol(X)
> cont.ia <- diag(p)[,attr(X,"assign")==3]
> fit.ia <- eBayes(contrasts.fit(fit, cont.ia))
>
> Now fit.ia contains the F-statistic and p-values for the interaction in
> fit.ia$F and fit.ia$F.p.value.
>
> > I had a look at FStat (classifyTestsF).  There seems to be a problem, in
> > that the matrix tstat is not premultiplied by the contrast matrix when
> > the F-statistics are computed.  So, if the contrasts are not full-rank,
> > an error is generated (instead of the F-statistics) because nrow(Q) !=
> > ncol(tstat)..  (See the lines below).
>
> No, the code is correct.  FStat is quite happy with non full rank contrasts
> but the contrast matrix must be applied using contrasts.fit() before
> entering FStat().  You should not expect to see a contrast matrix inside
> the classifyTestsF() code.
>
> Gordon
>
> > if (fstat.only) {
> >          fstat <- drop((tstat%*% Q)^2 %*% array(1, c(r, 1)))
> >          attr(fstat, "df1") <- r
> >          attr(fstat, "df2") <- df
> >          return(fstat)
> >      }
> >
> > I figured that before I fiddled with the code, I would check to make sure
> > that I didn't miss an existing routine to do this.
> >
> > Thanks in advance.
> >
> > Naomi S. Altman                                814-865-3791 (voice)
> > Associate Professor
> > Bioinformatics Consulting Center
> > Dept. of Statistics                              814-863-7114 (fax)
> > Penn State University                         814-865-1348 (Statistics)
> > University Park, PA 16802-2111
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor

-- 
Ramón Díaz-Uriarte
Bioinformatics Unit
Centro Nacional de Investigaciones Oncológicas (CNIO)
(Spanish National Cancer Center)
Melchor Fernández Almagro, 3
28029 Madrid (Spain)
Fax: +-34-91-224-6972
Phone: +-34-91-224-6900

http://ligarto.org/rdiaz
PGP KeyID: 0xE89B3462
(http://ligarto.org/rdiaz/0xE89B3462.asc)


Este correo electronico y, en su caso, cualquier fichero anexo al mismo, contiene informacion exclusivamente dirigida a su destinatario o destinatarios. Si Vd. ha recibido este mensaje por error, se ruega notificar esta circunstancia al remitente. Las ideas y opiniones manifestadas en este mensaje corresponden unicamente a su autor y no representan necesariamente a las del Centro Nacional de Investigaciones Oncologicas (CNIO).


The information contained in this message is intended for the addressee only. If you have received this message in error or there are any problems please notify the originator. Please note that the Spanish National Cancer Centre (CNIO), does not accept liability for any statements or opinions made which are clearly the sender's own and not expressly made on behalf of the Centre.



More information about the Bioconductor mailing list