[BioC] Design in factDesign
Jordi Altirriba Gutiérrez
altirriba at hotmail.com
Wed Apr 7 13:53:03 CEST 2004
Hi all!
Ive been using RMA and LIMMA to analyse my data and I am currently trying
to analyse it with the package factDesign. My design is a 2x2 factorial
design with 4 groups: diabetic treated, diabetic untreated, health treated
and health untreated with 3 biological replicates in each group. I want to
know what genes are differentially expressed due to diabetes, to the
treatment and to the combination of both (diabetes + treatment).
My phenoData is:
>pData(eset)
DIABETES TREATMENT
DNT1 TRUE FALSE
DNT2 TRUE FALSE
DNT3 TRUE FALSE
DT1 TRUE TRUE
DT2 TRUE TRUE
DT3 TRUE TRUE
SNT1 FALSE FALSE
SNT2 FALSE FALSE
SNT3 FALSE FALSE
ST1 FALSE TRUE
ST2 FALSE TRUE
ST3 FALSE TRUE
Are these commands correct to get the results listed below? Where are the
errors?
>lm.full<-function(y) lm(y ~ DIABETES + TREATMENT + DIABETES * TREATMENT)
>lm.diabetes<-function(y) lm(y ~ DIABETES)
>lm.treatment<-function(y) lm(y ~ TREATMENT)
>lm.diabetestreatment<-function(y) lm(y ~ DIABETES + TREATMENT)
>lm.f<-esApply(eset, 1, lm.full)
>lm.d<-esApply(eset, 1, lm.diabetes)
>lm.t<-esApply(eset, 1, lm.treatment)
>lm.dt<-esApply(eset, 1, lm.diabetestreatment)
## To get the genes characteristics of the treatment:
>Fpvals<-rep(0, length(lm.f))
>for (i in 1:length(lm.f)) {Fpvals[i]<-anova(lm.d[[i]], lm.f[[i]])$P[2]}
>Fsub<-which(Fpvals<0.01)
>eset.Fsub<-eset[Fsub]
>lm.f.Fsub<-lm.f[Fsub]
>betaNames<-names(lm.f[[1]] [["coefficients"]])
>lambda<-par2lambda(betaNames, c("TREATMENTTRUE"), c(1)) ## I get the same
>genes if I write : > lambda2 <- par2lambda (betaNames,
>list(c("TREATMENTTRUE" , "DIABETESTRUE:TREATMENTTRUE")),list( c(1,1)))
>mainTR<-function(x) contrastTest(x,lambda,p=0.1) [[1]]
>mainTRgenes<-sapply(lm.f.Fsub, FUN=mainES)
## To get the genes characteristics of the diabetes:
>for (i in 1:length(lm.f)) {Fpvals[i]<-anova(lm.t[[i]], lm.f[[i]])$P[2]}
>Fsub<-which(Fpvals<0.01)
>eset.Fsub<-eset[Fsub]
>lm.f.Fsub<-lm.f[Fsub]
>betaNames<-names(lm.f[[1]] [["coefficients"]])
>lambda<-par2lambda(betaNames, c("DIABETESTRUE"), c(1)) ## I get also the
>same genes if I consider the intersection DIABETESTRUE:TREATMENTTRUE.
>mainDI<-function(x) contrastTest(x,lambda,p=0.1) [[1]]
>mainDIgenes<-sapply(lm.f.Fsub, FUN=mainES)
## To get the genes characteristics of the diabetes+treatment:
>for (i in 1:length(lm.f)) {Fpvals[i]<-anova(lm.dt[[i]], lm.f[[i]])$P[2]}
>Fsub<-which(Fpvals<0.01)
>eset.Fsub<-eset[Fsub]
>lm.f.Fsub<-lm.f[Fsub]
> betaNames<-names(lm.f[[1]] [["coefficients"]])
>lambda<-par2lambda(betaNames, c("DIABETESTRUE:TREATMENTTRUE"), c(1))
>mainDT<-function(x) contrastTest(x,lambda,p=0.1) [[1]]
>mainDTgenes<-sapply(lm.f.Fsub, FUN=mainES) ## I dont get any fail to
>reject gene.
When I get the rejected and the failed to reject genes, can I classify
them by their Fvalues? How?
Thank you very much for your comments and help.
Yours sincerely,
Jordi Altirriba
IDIBAPS-Hospital Clinic (Barcelona, Spain)
_________________________________________________________________
Déjanos tu CV y recibe ofertas de trabajo en tu buzón. Multiplica tus
oportunidades con MSN Empleo. http://www.msn.es/Empleo/
More information about the Bioconductor
mailing list