|
Dr. Martin Maechler, Prof. Peter Bühlmann | Lectures: Th 13-15, HG E 3, Fr 9-10, HG E 3 |
Tutors: Daniel Stekhoven, Jamie Barron, Lukas Meier, Marco Frei, Sarah Gerster |
Exercises: Fr 10-12, HG E 3 Exception: Fr 20.02. 10-12, HG E 26.1 |
Multiple regression, nonparametric methods for regression and classification (kernel estimates, smoothing splines, regression and classification trees, additive models, projection pursuit, neural nets), curse of dimensionality, resampling, bootstrap, cross validation.
Thursday, 19.2.2009 (Exercises start on 20.2. with a special introduction to the "R" software)
A selection is online in this ftp directory.
Exercises will be based on the free open-source statistics and graphics software R. Emphasis will be put on applied problems. Active participation in the exercises is strongly recommended for all and required for credits for all students (with possible and rare exceptions for PhD-graduate students).
Of course you can always ask questions during the class and the exercise sessions. If you want to contact us by email, please write to compstat@stat.math.ethz.ch, NOT directly to a tutor.
T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. Springer
J. E. Gentle. Elements of Computational Statistics. Springer
W. N. Venables, B. D. Ripley. Modern Applied Statistics with S. Springer
Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne
graphische Elemente dargestellt. Die Funktionalität der
Website ist aber trotzdem gewährleistet. Wenn Sie diese
Website regelmässig benutzen, empfehlen wir Ihnen, auf
Ihrem Computer einen aktuellen Browser zu installieren. Weitere
Informationen finden Sie auf
folgender
Seite.
Important Note:
The content in this site is accessible to any browser or
Internet device, however, some graphics will display correctly
only in the newer versions of Netscape. To get the most out of
our site we suggest you upgrade to a newer browser.
More
information