plotmath {grDevices}  R Documentation 
Mathematical Annotation in R
Description
If the text
argument to one of the textdrawing functions
(text
, mtext
, axis
,
legend
) in R is an expression, the argument is
interpreted as a mathematical expression and the output will be
formatted according to TeXlike rules. Expressions can also be used
for titles, subtitles and x and yaxis labels (but not for axis
labels on persp
plots).
In most cases other language objects (names and calls, including formulas) are coerced to expressions and so can also be used.
Details
A mathematical expression must obey the normal rules of syntax for any R expression, but it is interpreted according to very different rules than for normal R expressions.
It is possible to produce many different mathematical symbols, generate sub or superscripts, produce fractions, etc.
The output from demo(plotmath)
includes several tables which
show the available features. In these tables, the columns of grey text
show sample R expressions, and the columns of black text show the
resulting output.
The available features are also described in the tables below:
Syntax  Meaning 
x + y  x plus y 
x  y  x minus y 
x*y  juxtapose x and y 
x/y  x forwardslash y 
x %+% y  x plus or minus y 
x %/% y  x divided by y 
x %*% y  x times y 
x %.% y  x cdot y 
x[i]  x subscript i 
x^2  x superscript 2 
paste(x, y, z)  juxtapose x, y, and z 
sqrt(x)  square root of x 
sqrt(x, y)  yth root of x 
x == y  x equals y 
x != y  x is not equal to y 
x < y  x is less than y 
x <= y  x is less than or equal to y 
x > y  x is greater than y 
x >= y  x is greater than or equal to y 
!x  not x 
x %~~% y  x is approximately equal to y 
x %=~% y  x and y are congruent 
x %==% y  x is defined as y 
x %prop% y  x is proportional to y 
x %~% y  x is distributed as y 
plain(x)  draw x in normal font 
bold(x)  draw x in bold font 
italic(x)  draw x in italic font 
bolditalic(x)  draw x in bold italic font 
symbol(x)  draw x in symbol font 
list(x, y, z)  commaseparated list 
...  ellipsis (height varies) 
cdots  ellipsis (vertically centred) 
ldots  ellipsis (at baseline) 
x %subset% y  x is a proper subset of y 
x %subseteq% y  x is a subset of y 
x %notsubset% y  x is not a subset of y 
x %supset% y  x is a proper superset of y 
x %supseteq% y  x is a superset of y 
x %in% y  x is an element of y 
x %notin% y  x is not an element of y 
hat(x)  x with a circumflex 
tilde(x)  x with a tilde 
dot(x)  x with a dot 
ring(x)  x with a ring 
bar(xy)  xy with bar 
widehat(xy)  xy with a wide circumflex 
widetilde(xy)  xy with a wide tilde 
x %<>% y  x doublearrow y 
x %>% y  x rightarrow y 
x %<% y  x leftarrow y 
x %up% y  x uparrow y 
x %down% y  x downarrow y 
x %<=>% y  x is equivalent to y 
x %=>% y  x implies y 
x %<=% y  y implies x 
x %dblup% y  x doubleuparrow y 
x %dbldown% y  x doubledownarrow y 
alpha  omega  Greek symbols 
Alpha  Omega  uppercase Greek symbols 
theta1, phi1, sigma1, omega1  cursive Greek symbols 
Upsilon1  capital upsilon with hook 
aleph  first letter of Hebrew alphabet 
infinity  infinity symbol 
partialdiff  partial differential symbol 
nabla  nabla, gradient symbol 
32*degree  32 degrees 
60*minute  60 minutes of angle 
30*second  30 seconds of angle 
displaystyle(x)  draw x in normal size (extra spacing) 
textstyle(x)  draw x in normal size 
scriptstyle(x)  draw x in small size 
scriptscriptstyle(x)  draw x in very small size 
underline(x)  draw x underlined 
x ~~ y  put extra space between x and y 
x + phantom(0) + y  leave gap for "0", but don't draw it 
x + over(1, phantom(0))  leave vertical gap for "0" (don't draw) 
frac(x, y)  x over y 
over(x, y)  x over y 
atop(x, y)  x over y (no horizontal bar) 
sum(x[i], i==1, n)  sum x[i] for i equals 1 to n 
prod(plain(P)(X==x), x)  product of P(X=x) for all values of x 
integral(f(x)*dx, a, b)  definite integral of f(x) wrt x 
union(A[i], i==1, n)  union of A[i] for i equals 1 to n 
intersect(A[i], i==1, n)  intersection of A[i] 
lim(f(x), x %>% 0)  limit of f(x) as x tends to 0 
min(g(x), x > 0)  minimum of g(x) for x greater than 0 
inf(S)  infimum of S 
sup(S)  supremum of S 
x^y + z  normal operator precedence 
x^(y + z)  visible grouping of operands 
x^{y + z}  invisible grouping of operands 
group("(",list(a, b),"]")  specify left and right delimiters 
bgroup("(",atop(x,y),")")  use scalable delimiters 
group(lceil, x, rceil)  special delimiters 
group(lfloor, x, rfloor)  special delimiters 
group(langle, list(x, y), rangle)  special delimiters 
The supported ‘scalable delimiters’ are  ( [ {
and their righthand versions.
"."
is equivalent to ""
: the corresponding delimiter
will be omitted. Delimiter 
is supported but has the same
effect as 
.
The special delimiters lceil
, lfloor
, langle
(and their righthand versions) are not scalable.
Note that paste
does not insert spaces when juxtaposing, unlike
(by default) the R function of that name.
The symbol font uses Adobe Symbol encoding so, for example, a lower
case mu can be obtained either by the special symbol mu
or by
symbol("m")
. This provides access to symbols that have no
special symbol name, for example, the universal, or forall, symbol is
symbol("\042")
. To see what symbols are available in this way
use TestChars(font=5)
as given in the examples for
points
: some are only available on some devices.
Note to TeX users: TeX's ‘\Upsilon’ is Upsilon1
, TeX's
‘\varepsilon’ is close to epsilon
, and there is no
equivalent of TeX's ‘\epsilon’. TeX's ‘\varpi’ is close to
omega1
. vartheta
, varphi
and varsigma
are
allowed as synonyms for theta1
, phi1
and sigma1
.
sigma1
is also known as stigma
, its Unicode name.
Control characters (e.g., ‘\n’) are not interpreted in character strings in plotmath, unlike normal plotting.
The fonts used are taken from the current font family, and so can be
set by par(family=)
in base graphics, and
gpar(fontfamily=)
in package grid.
Note that bold
, italic
and bolditalic
do not
apply to symbols, and hence not to the Greek symbols such as
mu
which are displayed in the symbol font. They also do not
apply to numeric constants.
Other symbols
On many OSes and some graphics devices many other symbols are
available as part of the standard text font, and all of the symbols in
the Adobe Symbol encoding are in principle available via
changing the font face or (see ‘Details’) plotmath: see the
examples section of points
for a function to display
them. (‘In principle’ because some of the glyphs are missing
from some implementations of the symbol font.) Unfortunately,
pdf
and postscript
have support for little
more than European (not Greek) and CJK characters and the Adobe Symbol
encoding (and in a few fonts, also Cyrillic characters).
 On Unixalikes:

In a UTF8 locale any Unicode character can be entered, perhaps as a ‘\uxxxx’ or ‘\Uxxxxxxxx’ escape sequence, but the issue is whether the graphics device is able to display the character. The widest range of characters is likely to be available in the
X11
device using cairo: see its help page for how installing additional fonts can help. This can often be used to display Greek letters in bold or italic.On macOS the
quartz
device and the default system fonts have quite large coverage.In nonUTF8 locales there is normally no support for symbols not in the languages for which the current encoding was intended.
 On Windows:

Any Unicode character can be entered into a text string via a ‘\uxxxx’ escape, or used by number in a call to
points
. Thewindows
family of devices can display such characters if they are available in the font in use. This can often be used to display Greek letters in bold or italic.A good way to both find out which characters are available in a font and to determine the Unicode number is to use the ‘Character Map’ accessory (usually on the ‘Start’ menu under ‘Accessories>System Tools’). You can also copyandpaste characters from the ‘Character Map’ window to the
Rgui
console (but not toRterm
).
References
Murrell, P. and Ihaka, R. (2000). An approach to providing mathematical annotation in plots. Journal of Computational and Graphical Statistics, 9, 582–599. doi:10.2307/1390947.
A list of the symbol codes can be found in decimal, octal and hex at https://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html.
See Also
demo(plotmath)
,
axis
,
mtext
,
text
,
title
,
substitute
quote
, bquote
Examples
require(graphics)
x < seq(4, 4, length.out = 101)
y < cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",
main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),
ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")
axis(1, at = c(pi, pi/2, 0, pi/2, pi),
labels = expression(pi, pi/2, 0, pi/2, pi))
## How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")
theta < 1.23 ; mtext(bquote(hat(theta) == .(theta)), line= .25)
for(i in 2:9)
text(i, i+1, substitute(list(xi, eta) == group("(",list(x,y),")"),
list(x = i, y = i+1)))
## note that both of these use calls rather than expressions.
##
text(1, 10, "Derivatives:", adj = 0)
text(1, 9.6, expression(
" first: {f * minute}(x) " == {f * minute}(x)), adj = 0)
text(1, 9.0, expression(
" second: {f * second}(x) " == {f * second}(x)), adj = 0)
## note the "{ .. }" trick to get "chained" equations:
plot(1:10, 1:10, main = quote(1 <= {1 < 2}))
text(4, 9, expression(hat(beta) == (X^t * X)^{1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{1} * X^t * y)",
cex = .8)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",
cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",
plain(e)^{frac((xmu)^2, 2*sigma^2)})),
cex = 1.2)
## some other useful symbols
plot.new(); plot.window(c(0,4), c(15,1))
text(1, 1, "universal", adj = 0); text(2.5, 1, "\\042")
text(3, 1, expression(symbol("\042")))
text(1, 2, "existential", adj = 0); text(2.5, 2, "\\044")
text(3, 2, expression(symbol("\044")))
text(1, 3, "suchthat", adj = 0); text(2.5, 3, "\\047")
text(3, 3, expression(symbol("\047")))
text(1, 4, "therefore", adj = 0); text(2.5, 4, "\\134")
text(3, 4, expression(symbol("\134")))
text(1, 5, "perpendicular", adj = 0); text(2.5, 5, "\\136")
text(3, 5, expression(symbol("\136")))
text(1, 6, "circlemultiply", adj = 0); text(2.5, 6, "\\304")
text(3, 6, expression(symbol("\304")))
text(1, 7, "circleplus", adj = 0); text(2.5, 7, "\\305")
text(3, 7, expression(symbol("\305")))
text(1, 8, "emptyset", adj = 0); text(2.5, 8, "\\306")
text(3, 8, expression(symbol("\306")))
text(1, 9, "angle", adj = 0); text(2.5, 9, "\\320")
text(3, 9, expression(symbol("\320")))
text(1, 10, "leftangle", adj = 0); text(2.5, 10, "\\341")
text(3, 10, expression(symbol("\341")))
text(1, 11, "rightangle", adj = 0); text(2.5, 11, "\\361")
text(3, 11, expression(symbol("\361")))