kde2d {MASS} | R Documentation |
Two-Dimensional Kernel Density Estimation
Description
Two-dimensional kernel density estimation with an axis-aligned bivariate normal kernel, evaluated on a square grid.
Usage
kde2d(x, y, h, n = 25, lims = c(range(x), range(y)))
Arguments
x |
x coordinate of data |
y |
y coordinate of data |
h |
vector of bandwidths for x and y directions. Defaults to
normal reference bandwidth (see |
n |
Number of grid points in each direction. Can be scalar or a length-2 integer vector. |
lims |
The limits of the rectangle covered by the grid as |
Value
A list of three components.
x , y |
The x and y coordinates of the grid points, vectors of length |
z |
An |
References
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
Examples
attach(geyser)
plot(duration, waiting, xlim = c(0.5,6), ylim = c(40,100))
f1 <- kde2d(duration, waiting, n = 50, lims = c(0.5, 6, 40, 100))
image(f1, zlim = c(0, 0.05))
f2 <- kde2d(duration, waiting, n = 50, lims = c(0.5, 6, 40, 100),
h = c(width.SJ(duration), width.SJ(waiting)) )
image(f2, zlim = c(0, 0.05))
persp(f2, phi = 30, theta = 20, d = 5)
plot(duration[-272], duration[-1], xlim = c(0.5, 6),
ylim = c(1, 6),xlab = "previous duration", ylab = "duration")
f1 <- kde2d(duration[-272], duration[-1],
h = rep(1.5, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
contour(f1, xlab = "previous duration",
ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
f1 <- kde2d(duration[-272], duration[-1],
h = rep(0.6, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
contour(f1, xlab = "previous duration",
ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
f1 <- kde2d(duration[-272], duration[-1],
h = rep(0.4, 2), n = 50, lims = c(0.5, 6, 0.5, 6))
contour(f1, xlab = "previous duration",
ylab = "duration", levels = c(0.05, 0.1, 0.2, 0.4) )
detach("geyser")