housing {MASS} | R Documentation |
The housing
data frame has 72 rows and 5 variables.
housing
Sat
Satisfaction of householders with their present housing circumstances, (High, Medium or Low, ordered factor).
Infl
Perceived degree of influence householders have on the management of the property (High, Medium, Low).
Type
Type of rental accommodation, (Tower, Atrium, Apartment, Terrace).
Cont
Contact residents are afforded with other residents, (Low, High).
Freq
Frequencies: the numbers of residents in each class.
Madsen, M. (1976) Statistical analysis of multiple contingency tables. Two examples. Scand. J. Statist. 3, 97–106.
Cox, D. R. and Snell, E. J. (1984) Applied Statistics, Principles and Examples. Chapman & Hall.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
options(contrasts = c("contr.treatment", "contr.poly")) # Surrogate Poisson models house.glm0 <- glm(Freq ~ Infl*Type*Cont + Sat, family = poisson, data = housing) ## IGNORE_RDIFF_BEGIN summary(house.glm0, cor = FALSE) ## IGNORE_RDIFF_END addterm(house.glm0, ~. + Sat:(Infl+Type+Cont), test = "Chisq") house.glm1 <- update(house.glm0, . ~ . + Sat*(Infl+Type+Cont)) summary(house.glm1, cor = FALSE) 1 - pchisq(deviance(house.glm1), house.glm1$df.residual) dropterm(house.glm1, test = "Chisq") addterm(house.glm1, ~. + Sat:(Infl+Type+Cont)^2, test = "Chisq") hnames <- lapply(housing[, -5], levels) # omit Freq newData <- expand.grid(hnames) newData$Sat <- ordered(newData$Sat) house.pm <- predict(house.glm1, newData, type = "response") # poisson means house.pm <- matrix(house.pm, ncol = 3, byrow = TRUE, dimnames = list(NULL, hnames[[1]])) house.pr <- house.pm/drop(house.pm %*% rep(1, 3)) cbind(expand.grid(hnames[-1]), round(house.pr, 2)) # Iterative proportional scaling loglm(Freq ~ Infl*Type*Cont + Sat*(Infl+Type+Cont), data = housing) # multinomial model library(nnet) (house.mult<- multinom(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)) house.mult2 <- multinom(Sat ~ Infl*Type*Cont, weights = Freq, data = housing) anova(house.mult, house.mult2) house.pm <- predict(house.mult, expand.grid(hnames[-1]), type = "probs") cbind(expand.grid(hnames[-1]), round(house.pm, 2)) # proportional odds model house.cpr <- apply(house.pr, 1, cumsum) logit <- function(x) log(x/(1-x)) house.ld <- logit(house.cpr[2, ]) - logit(house.cpr[1, ]) (ratio <- sort(drop(house.ld))) mean(ratio) (house.plr <- polr(Sat ~ Infl + Type + Cont, data = housing, weights = Freq)) house.pr1 <- predict(house.plr, expand.grid(hnames[-1]), type = "probs") cbind(expand.grid(hnames[-1]), round(house.pr1, 2)) Fr <- matrix(housing$Freq, ncol = 3, byrow = TRUE) 2*sum(Fr*log(house.pr/house.pr1)) house.plr2 <- stepAIC(house.plr, ~.^2) house.plr2$anova