bgmm: Gaussian Mixture Modeling algorithms. Including the belief-based mixture modeling

The bgmm package implements two partially supervised mixture modeling methods: soft-label and belief-based modeling. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Version: 1.6
Depends: R (≥ 2.0), mvtnorm, car, lattice, combinat
Published: 2013-11-19
Author: Przemyslaw Biecek \& Ewa Szczurek
Maintainer: Przemyslaw Biecek <P.Biecek at mimuw.edu.pl>
License: GPL-3
URL: http://bgmm.molgen.mpg.de/
NeedsCompilation: no
Citation: bgmm citation info
In views: Cluster
CRAN checks: bgmm results

Downloads:

Reference manual: bgmm.pdf
Package source: bgmm_1.6.tar.gz
OS X binary: bgmm_1.6.tgz
Windows binary: bgmm_1.6.zip
Old sources: bgmm archive