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Abstract

The p-value has been debated exorbitantly in the last decades, experiencing fierce critique,
but also finding some advocates. The fundamental issue with its misleading interpretation
stems from its common use for testing the unrealistic null hypothesis of an effect that is
precisely zero. A meaningful question asks instead whether the effect is relevant. It is then
unavoidable that a threshold for relevance is chosen. Considerations that can lead to
agreeable conventions for this choice are presented for several commonly used statistical
situations. Based on the threshold, a simple quantitative measure of relevance emerges
naturally. Statistical inference for the effect should be based on the confidence interval for
the relevance measure. A classification of results that goes beyond a simple distinction like
“significant / non-significant” is proposed. On the other hand, if desired, a single number
called the “secured relevance” may summarize the result, like the p-value does it, but with a
scientifically meaningful interpretation.

1 Introduction 1

The p-value is arguably the most used and most controversial concept of applied statistics. 2

Blume et al. [1] summarize the shoreless debate about its flaws as follows: “Recurring 3

themes include the difference between statistical and scientific significance, the routine 4

misinterpretation of non-significant p-values, the unrealistic nature of a point null 5

hypothesis, and the challenges with multiple comparisons.” They nicely collect 14 citations, 6

and I refrain from repeating their introduction here, but complement the analysis of the 7

problem and propose a solution that both simplifies and extends their’s. 8

The basic cause of the notorious lack of reliability of empirical research, notably in parts 9

of social and medical science, can be found in the failure to ask scientific questions in a 10

sufficiently explicit form, and the p-value problem is intrinsically tied to this flaw. Here is my 11

argument. 12

Most empirical studies focus on the effect of some treatment, expressed as the difference 13

of a target variable between groups, or on the relationship between two or more variables, 14

often expressed with a regression model. Inferential statistics needs a probabilistic model 15

that describes the scientific question. Usually, this is a parametric model in which the effect 16

of interest appears as a parameter. The question is then typically specified as: “Can we 17

prove that the effect is not zero?” 18

The Zero Hypothesis Testing Paradox. This is, however, not a scientifically 19

meaningful question. When a study is undertaken to find some difference between groups or 20

some influence between variables, the true effect—e.g., the difference between two within 21

group expected values—will never be precisely zero. Therefore, the strawman null hypothesis 22

of zero true effect (the “zero hypothesis”) could in almost all reasonable applications be 23

rejected if one had the patience and resources to obtain enough observations. Consequently, 24
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the question that is answered mutates to: “Did we produce sufficiently many observations 25

to prove the (alternative) hypothesis that was true on an apriori basis?” This does not seem 26

to be a fascinating task. I call this argument the “Zero Hypothesis Testing Paradox.” The 27

problem with the p-value is thus that it is the output of testing an unrealistic null hypothesis 28

and thereby answers a nonsensical scientific question. (Note that the proposal to lower the 29

testing level from 5 % to 0.5 % by Benjamin et al. [2] is of no help in this respect.) 30

A sound question about an effect is whether it is large enough to be relevant. In other 31

words: Without the specification of a threshold of relevance, the scientific question is void. 32

Scientists have gladly avoided the determination of such a threshold, because they felt 33

that it would be arbitrary, and have jumped on the train of “Null Hypothesis Significance 34

Testing,” that was offered cheaply by statistics. Let us be clear: Avoiding the choice of a 35

relevance threshold means avoiding a scientifically meaningful question. 36

Given the relevance threshold, the well-known procedures can be applied not only for 37

testing the null hypothesis that the effect is larger than the threshold against the alternative 38

that it is smaller, but also vice versa, proving statistically that the effect is negligible. The 39

result can of course also be ambiguous, meaning that the estimate is neither significantly 40

larger nor smaller than the threshold. I introduce a finer distinction of cases in Section 2.3. 41

These ideas are well-known under the heading of equivalence testing, and similar 42

approaches have been advocated in connection with the p-value problem, like the “Two 43

One-Sided Tests (TOST)” of Lakens [3], the “Second Generation p-value (SGPV)” by 44

Blume et al. [1], or the “Minimum Effect Size plus p-value (MESP)” by Goodman et al. [4]. 45

The threshold has been labelled “Smallest Effect Size Of Interest (SESOI)” or “Minimum 46

Practically Significant Distance (MPSD).” I come back to these concepts in Section 2.2. 47

Using confidence intervals instead of p-values or even “yes-no” results of null hypothesis 48

tests provides the preferable, well-known alternative to null hypothesis testing for drawing 49

adequate inference. Each reader can then judge a result by checking if his or her own 50

threshold of relevance is contained in the interval. Providing confidence intervals routinely 51

would have gone a long way to solving the problem. I come back to this issue in the 52

Discussion (Section 6). 53

Most probably, the preference to present p-values rather than confidence intervals is due 54

to the latter’s slightly more complicated nature. In their usual form, they are given by two 55

numbers that are not directly comparable between applications. I will define a single 56

number, which I call “significance,” that characterizes the essence of the confidence interval 57

in a simple and informative way. 58

In “ancient” times, before the computer produced p-values readily, statisticians examined 59

the test statistics and then compared them to tables of “critical values.” In the widespread 60

case that the t test was concerned, they used the t statistic as an informal quantitative 61

measure of significance of an effect by comparing it to the number 2, which is approximately 62

the critical value for moderate to large numbers of degrees of freedom. This will also shine 63

up in the proposed significance measure. 64

Along the same line of thought, a simple measure of relevance will be introduced. It 65

compares the estimated effect with the relevance threshold. The respective confidence 66

interval is used to distinguish the cases mentioned above, and a single value can be used to 67

characterize the result with the same simplicity as the p-value does it, but with a much 68

more informative interpretation. 69

2 Definitions 70

The simplest case for statistical inference is the estimation of a constant based on a sample 71

of normal observations. It directly applies to the estimation of a difference between two 72

treatments using paired observations. I introduce the new concepts first for this situation. 73

The problem of assessing a general parameter as well as the application of the concepts for 74
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typical situations—comparison of two or more samples, estimation of proportions, regression 75

and correlation—will be discussed in Section 3. 76

2.1 The generic case 77

Consider a sample of n statistically independent observations Yi with a normal distribution, 78

Yi ∼ N
(
ϑ, σ2

)
. (1)

The interest is in knowing whether ϑ is different from 0 in a relevant manner, where 79

relevance is determined by the relevance threshold ζ > 0. Thus, I want to summarize the 80

evidence for the hypotheses 81

H0 : ϑ ≤ ζ , H1 : ϑ > ζ .

(The symbol ζ, pronounced “zeta,” delimits the “zero” hypothesis.) 82

One sided. I consider a one-sided hypothesis here. In practice, only one direction of the 83

effect is usually plausible and/or of interest. Even if this is not the case, the conclusion 84

drawn will be one-sided: If the estimate turns out to be significant according to the 85

two-sided test for 0 effect, then nobody will conclude that “the effect is different from zero, 86

but we do not know whether it is positive or negative.” Therefore, in reality, two one-sided 87

tests are conducted, and technically speaking, a Bonferroni correction is applied by using the 88

level α/2 = 0.025 for each of them. Thus, I treat the one-sided hypothesis and use this 89

testing level. 90

The point estimate and confidence interval are 91

ϑ̂ = Y = 1
n

∑
iYi , CIϑ = ϑ̂± ω̂ , ω̂ = q

√
V̂ /n , (2)

where V̂ is the empirical variance of the sample, V̂ = 1
n−1

∑
i(Yi − Y )2, and q is the 92

1− α/2 = 0.975 quantile of the appropriate t distribution. Thus, ω̂ is half the width of the 93

confidence interval and equals the standard error, multiplied by the quantile. 94

In general problems involving a single effect parameter, the estimated effect usually 95

follows approximately a normal distribution, and these concepts are easily generalized, see 96

Section 3. 97

Significance. The proposed significance measure compares the difference between the 98

estimated effect and the relevance threshold with the half width of the confidence interval, 99

Sigζ = (ϑ̂− ζ)/ω̂ . (3)

The effect is statistically significantly larger than the threshold if and only if Sigζ > 1. 100

Significance can also be calculated for the common test for zero effect, Sig0 = ϑ̂/ω̂. 101

This quantity can be listed in computer output in the same manner as the p-value is given in 102

today’s programs, without a requirement to specify ζ. It is much easier to interpret than the 103

p-value, since it is, for a given precision expressed by ω̂, proportional to the estimated effect 104

ϑ̂. Furthermore, a standardized version of the confidence interval for the effect is Sig0 ± 1, 105

Sig0 ± 1 = ω̂ CIϑ , CIϑ = ϑ̂
(
1± 1/Sig0

)
.

Nevertheless, it should be clear from the Introduction that Sig0 should only be used with 106

extreme caution, since it does not reflect relevance. 107
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Relevance. An extremely simple and intuitive quantitative measure of relevance is the 108

effect, expressed in ζ units, Rl = ϑ/ζ. Its point and interval estimates are 109

Rle = ϑ̂/ζ , CIRl = CIϑ/ζ . (4)

I also introduce the “secured relevance” as the lower end of the confidence interval, 110

Rls = Rle− ω̂∗ , ω̂∗ = ω̂/ζ

and the “potential relevance” Rlp = Rle + ω̂∗. The effect is called relevant if Rls > 1, that 111

is, if the estimated effect is significantly larger than the threshold. 112

The estimated relevance Rle is related to Sigζ by 113

Sigζ = (Rle− 1)/ω̂∗ , Rle = Sigζ ω̂
∗ + 1 .

Fig 2 shows several cases of relations between the confidence interval and the effects 0 114

and ζ, which can be translated into categories that help interpret results, see Section 2.3. 115

Example: Student’s sleep data. Student [5] illustrated his t-test with data measuring 116

the extra sleep evoked by a sleep enhancing drug in 10 patients. The numbers in minutes 117

are −6, 6, 48, 66, 96, 114, 204, 264, 276, 330. Their mean is ϑ̂ = Y = 140. The p-value 118

for testing the hypothesis of no prolongation is 0.5 % and the confidence interval extends 119

from 54 to 226. The zero significance is obtained from V = 14, 432, n = 10 and q = 2.26 120

with ω̂ = 2.26
√

14, 432/10 = 86 as Sig0 = 140/86 = 1.63. 121

If the relevance threshold is one hour, ζ = 60, of extra sleep then Sigζ = 80/86 = 0.93, 122

and the gain is not significantly relevant. This is also seen when calculating the relevance 123

and its confidence interval, Rle = 140/60 = 2.33 and Rls = 2.33− 86/60 = 54/60 = 0.90, 124

Rlp = 2.33 + 86/60 = 226/60 = 3.76. It remains therefore unclear whether the sleep 125

prolongation is relevant. Fig 1 shows the results graphically. 126

-
extra minutes0 100

Rel.thr. ζ

� -
ϑ̂ω̂ ω̂

Sig0 = ϑ̂/ω̂ confidence interval

-
relevance0 1� -

RleRls Rlp

X X X X X X X X X X

1

127

Fig 1. Estimate, confidence interval and relevance for the sleep data

2.2 Related concepts 128

Two one-sided tests (TOST). Lakens [3] focusses on testing for a negligible effect, 129

advocating the paradigm of equivalence testing. He considers an interval of values that are 130

negligibly different from the point null hypothesis, also called a “thick” or “interval 131

null” [4], [1]. If this interval is denoted as |ϑ| ≤ ζ, there is a significantly negligible effect if 132

both hypotheses ϑ > ζ and ϑ < −ζ are rejected using a one-sided test for each of them. A 133

respective p-value is the larger of the p-values for the two tests. 134

I have argued for a one-sided view of the scientific problem. With this perspective, the 135

idea reduces to the one one-sided test for a negligible effect with significance measure 136

−Sigζ . 137
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Second Generation P-Value. The “Second Generation P-Value” SGPV Pδ has been 138

introduced by Blume et al. [1, 6]. In the present notation, ζ is their δ. The definition of Pζ 139

starts from considering the length O of the overlap of the confidence interval with the 140

interval defined by the composite null hypothesis H0. Assume first that ϑ̂ > 0. Then, the 141

overlap measures O = 2ω̂ if the confidence interval contains the “null interval,” that is, if 142

ϑ̂+ ω̂ < ζ, and otherwise, O = ζ − (ϑ̂− ω̂), or 0 if this is negative. 143

The definition of Pζ distinguishes two cases based on comparing ω̂ to the threshold ζ. If 144

ω̂ < 2ζ, Pζ = 0 if there is no overlap, and Pζ = 1 for complete overlap, O = 2ω̂. In 145

between, the SGPV is the overlap, compared to the length of the confidence interval, 146

Pζ =
O

2ω̂
=
ζ − (ϑ̂− ω̂)

2ω̂
=
ζ − ϑ̂

2ω̂
+ 1

2 = 1
2

(
1− Sigζ

)
.

In this case, then, Pζ is a rescaled, mirrored, and truncated version of the significance at ζ. 147

Here, I have neglected a complication that arises when the confidence interval covers 148

values below −ζ. The definition of Pζ starts from a two-sided formulaton of the problem, 149

H0 : |ϑ| < ζ. Then, the confidence interval can also cover values below −ζ. In this case, 150

the overlap decreases and Pζ changes accordingly. 151

The definition of Pζ changes if the confidence interval is too large, specifically, if its 152

length exceeds 2ζ. This comes again from the fact that it was introduced with the 153

two-sided problem in mind. In order to avoid small values of Pζ caused by a large 154

denominator 2ω̂ in this case, the length of the overlap O is divided by twice the length 2ζ of 155

the “null interval,” instead of the length of the confidence interval, 2ω̂, Pζ = O/(4ζ). Then, 156

Pζ has a maximum value of 1/2, which is a deliberate consequence of the definition, as this 157

value does not suggest a “proof” of H0. For a comparison of the SGPV with TOST, see [7]. 158

If the overlap is empty, Pζ = 0. In this case, the concept of SGPV is supplemented with 159

the notion of the “δ gap,” 160

Gapζ = (ϑ̂− ζ)/ζ = Rle− 1 .

Since the significance and relevance measures are closely related to the Second 161

Generation P-Value and the δ gap, one might ask why still new measures should be 162

introduced. Here is why: 163

• An explicit motivation for the SGPV was that it should resemble the traditional 164

p-value by being restriced to the 0-1 interval. I find this quite undesirable, as it 165

perpetuates the misinterpretation of P as a probability. Even worse, the new concept 166

is further removed from such an interpretation than the old one, for which the 167

problem “Find a correct statement including the terms p-value and probability” still 168

has a (rather abstract) solution. 169

• The new p-value was constructed to share with the classical one the property that 170

small values signal a large effect. This is a counter-intuitive aspect that leads to 171

confusion for all beginners in statistics. In contrast, larger effects lead to larger 172

significance (and, of course, larger relevance). 173

• Taking these arguments together, the problems with the p-value are severe enough to 174

prefer a new concept with a new name and more direct and intuitive interpretation 175

rather than advocating a new version of p-value that will be confused with the 176

traditional one. 177

• The definition of the SGPV is unnecessarily complicated, since it is intended to 178

correspond to the two-sided testing problem, and only quantifies the undesirable case 179

of ambiguous results. It deliberately avoids to quantify the strength of evidence in the 180

two cases in which either H0 or H1 is accepted. 181
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2.3 Classification of results 182

There is a wide consensus that statistical inference should not be reported simply as 183

“significant” or “non-significant.” Nevertheless, communication needs words. I therefore 184

propose to distiguish the cases that the effect is shown to be relevant (Rlv), that is, 185

H1 : ϑ > ζ is “statistically proven,” or negligible (Ngl), that is, H0 : ϑ ≤ ζ is proven, or the 186

result is ambiguous (Amb), based on the significance measure Sigζ or on the secured and 187

potential relevance Rls and Rlp (Rls > 1 for Rlv, Rlp < 1 for Ngl and Rls ≤ 1 ≤ Rlp for 188

Amb). 189

For a finer classification, the significance for a zero effect, Sig0, is also taken into 190

account. This may even lead to a contradiction (Ctr) if the estimated effect is significantly 191

negative. Fig 2 shows the different cases with corresponding typical confidence intervals, 192

and Table 1 lists the respective significance and relevance ranges. Similar figures have 193

appeared in [1, Fig. 2] and [4, Fig. 1] and before, with different interpretations. 194

-
effect ϑ

0 relevance thr. ζ

Rlv: relevant

Amb.Sig: ambiguous, significant

Amb: ambiguous

Ngl.Sig: negligible, significant

Ngl: negligible

Ctr: contradicting

1

195

Fig 2. Classification of cases based on a confidence interval and a relevance
threshold

Table 1. Classification of cases defined by ranges of significance and relevance measures. s
and r are the place holders for the column headings.

Case Sig0 Sigζ Rls Rlp

Rlv s >> 1 s > 1 r > 1 r >> 1
Amb.Sig s > 1 −1 < s < 1 0 < r < 1 r > 1

Amb −1 < s < 1 −1 < s < 1 r < 0 r > 1
Ngl.Sig s > 1 s < −1 0 < r < 1 0 < r < 1

Ngl −1 < s < 1 s < −1 r < 0 0 < r < 1
Ctr s < −1 s << −1 r << 0 r < 0
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3 Generalization and more models 196

3.1 General model and two-sample problem 197

Let us now discuss a general parametric model. To make the notation transparent, the 198

two-sample problem is discussed in parallel as an example. 199

Consider n statistically independent observations following the parametric model 200

Y i ∼ F
(
θ, φi;xi

)
, (5)

where θ is the parameter of interest, φi denotes nuisance parameters, and the distribution F 201

may vary between observations depending on covariates xi. These variables may be 202

multidimensional. 203

The model for comparing two treatments arises when xi = 1 if observation i received 204

treatment 1, and xi = 0 otherwise; θ is the difference of expected values between the two 205

groups; and the nuisance parameters are the expected value φ(1) = µ0 of Yi for treatment 206

k = 0 and the standard deviation of the observations, φ(2) = σ. Then, 207

Yi ∼ N
(
µ0 + θxi , σ

2
)
.

The problem is to draw inference about the effect θ. There is a “null value” θ0 and a 208

threshold ζ for a relevant effect. For ease of notation, assume ζ > 0. 209

Inference is based on an estimator θ̂ of θ. Assume that its distribution is approximately 210

(multivariate) normal, 211

θ̂ ≈∼ Np(θ,V/n) , (6)

where the “single observation” variance-covariance matrix V may depend on all nuisance 212

parameters φi and design vectors xi, i = 1, ..., n, and p is the dimension of θ. It may also 213

depend on the parameter of interest, θ, but this case needs additional discussion. These 214

assumptions usually hold for the Maximum Likelihood Estimator of [θ, φ], V being the ”θ 215

part” of the inverse Fisher Information of a single observation. 216

In the two samples problem with n0 observations in group k = 0 and n1, in group k = 1, 217

θ̂ = 1
n1

∑
iYixi −

1
n0

∑
i Yi(1− xi)

V = (1/ν0 + 1/ν1)σ2 , νk = nk/n .

Effect scale. In several models, it appears useful to consider a transformed version of the 218

parameter of interest as the effect, since the transformation leads to a more generally 219

interpretable measure and may have more appealing properties, as in the next subsection. 220

Therefore, the original parameter of interest is denoted as θ or as popular in the model, and 221

the transformed version will be considered as the effect, ϑ = g(θ). 222

In order to obtain a standardized version of an effect measure that does not depend on 223

units of measurement, the effect can be standardized, 224

ϑ = θ
/√

V

in the one-dimensional case. (For the mulitvariate case, see Section 3.6.) Note that the 225

single observation variance is used here, which makes the definition a parameter of the 226

model, independent of the number of observations. It still depends on the estimator of the 227

parameter (and the design in regression models, see below) through V . One may therefore 228

use the inverse Fisher information for the effect, which equals the variance of the Maximum 229

Likelihood Estimator, instead of the V defined by the estimator actually used. 230
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If the variance depends on the effect parameter, this standardization is of limited value. 231

Therefore, a variance stabilizing transformation may be appropriate. If V is constant, the 232

confidence interval for the standardized effect is 233

ϑ̂± q
/√

n ,

where q is the appropriate quantile of the normal or a t distribution. 234

In the case of two samples, a very popular way to standardize the difference between the 235

groups is Cohen[8]’s d 236

d = θ
/
σ .

The standardized effect ϑ is related to d by 237

ϑ = d
/√

1/ν0 + 1/ν1 = d
√
ν0ν1 .

If the two groups are equally frequent, ν0 = ν1 = 1/2, then d = 2ϑ. 238

Cohen’s d and the effect ϑ compare the difference between the groups to the variation σ 239

of the target variable within groups. This makes sense if σ measures the natural standard 240

variation between observation units. It is not well justified if it includes measurement error, 241

since this would change if more precise measurements were obtained, for example, by 242

averaging over several repeated measurements. In this case, the standardized effect is not 243

defined by the scientific question alone, but also by the study design. 244

Even though d and ϑ have been introduced in the two samples framework, they also 245

apply to a single sample, since the effect in this case is the difference between its expected 246

value and a potential population that has an expectation of zero. Remember that the effect 247

and its threshold are defined as a function of parameters (a single one in this case), not of 248

their estimates. 249

3.2 Proportions 250

When a proportion is estimated, the model is, using B to denote the binomial distribution, 251

Yi ∼ B(1, p) , p̂ = S/n , S =
∑
iYi ∼ B(n, p)

p̂ ≈∼ N(p, Vp/n) , Vp = p (1− p) .

For this model, the variance Vp depends on the parameter of interest. As a consequence, 252

the confidence intervals derived from the asymptotic approximation are not suitable for 253

small to moderate sample sizes—more precisely, for small np or n(1− p). Exact confidence 254

intervals are well-known and resolve the problem. However, choosing a relevance threshold 255

needs more attention. It may be plausible to say that a difference of 0.05 is relevant if p is 256

around 1/2, but such a difference is clearly too high if p is itself around 0.05 or below. Thus, 257

the relevance threshold should depend on the effect itself. The choice of a relevance 258

threshold is discussed in Section 4. 259

Variance stabilizing transformation. A variance stabilizing transformation helps to 260

make the general procedures more successful. Here, 261

ϑ = g(p) = asin(
√
p)/ (π/2)

is the useful transformation. (The division by π/2 entails a range from 0 to 1.) It leads to 262

ϑ̂ = g(S/n) ≈∼ N(ϑ, V/n) , V = 1/π2 .
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Risk. Risks usually have low probabilities of occurring. Good practice focusses on 263

logarithmically transformed risks, even more clearly when comparing or modelling them: 264

When a treatment changes a risk, the effect is naturally assessed in terms of a percentage 265

change it entails. This translates into a change on the log scale that is independent of the 266

probability p. Thus, the effect measure should be ϑ = log(p). The variance transforms to 267

V ≈ 1/p = e−ϑ and again depends on the effect ϑ. 268

Logit transformation. When larger probabilities are studied, it is appropriate to modify 269

the logarithm into the logit transformation, leading to the log-odds instead of the probability 270

p as the effect parameter, 271

ϑ = log

(
p

1− p

)
, ϑ̂ = log

(
S + 0.5

n− S + 0.5

)
,

where the expression for ϑ̂ is called empirical logit and avoids infinite values for S = 0 and 272

S = n. The variance is var
(
ϑ̂
)
≈ V/n, where the single observation variance V is 273

V =
1

p(1− p)
= 2 + eϑ + e−ϑ .

Comparing two proportions. Log-odds are again suitable for a comparison between two 274

proportions p0 and p1. They lead to the log-odds ratio, 275

ϑ = log

(
p1

1− p1

/
p0

1− p0

)
= log(p1/(1− p1))− log(p0/(1− p0)) .

For such comparisons, paired observations are not popular. Therefore, consider two groups, 276

k = 0, 1, with n0 = nν0 and n1 = nν1 observations. Using the difference of empirical logits 277

to estimate ϑ leads to 278

V =
1

ν0 p0(1− p0)
+

1

ν1 p1(1− p1)
.

Again, the variance stabilizing transformation for p could be used, treating 279

ϑ = g(p1)− g(p2) as the effect, but retaining the desirable properties of the log-odds ratio 280

appears more important. 281
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3.3 Simple regression and correlation 282

Normal response. In applications of the common simple regression model, 283

Yi = α+ βxi + εi , εi ∼ N
(
0, σ2

)
,

the slope is almost always the parameter of interest, θ = β, the nuisance parameters being 284

φ = [α, σ]. The least squares estimator and its “single observation variance” are 285

θ̂ = 1
n−1

∑
i(Yi − Y )(xi − x)

/
MSX , MSX = 1

n−1
∑
i(xi − x)2

Vθ = σ2/MSX .

(To be precise, Vθ corresponds to (6) if n is replaced by n− 1.) 286

In order to make the coefficient comparable between studies, the standardized coefficient 287

β∗ has been introduced as the amount of change in the target variable, in units of its 288

(marginal) standard deviation
√
MSY, induced by increasing the predictor x by once its 289

standard deviation, δx =
√
MSX, that is, β̂∗ = β̂

√
MSX

/√
MSY. Here, I prefer to measure 290

the effect in units of the error standard deviation σ, since this effect is not limited by 1, and 291

therefore the relevance measure will not be limited either. Thus, I introduce the “coefficient 292

effect” as 293

ϑ = β
√
MSX/σ , V = (n− 1) var

(
ϑ̂
)

= 1 .

(Thus, ϑ̂ = β̂∗
√
MSY/σ̂.) 294

In principle, the effect in this situation should measure the effect of a relevant change δx 295

in the predictor x on the target variable Y . In the absence of a plausible δx and a natural 296

unit of measurement for Y coming from the scientific context, a reasonable choice is to set 297

δx equal to the standard deviation of x, and σ is used as a unit of measurement, leading to 298

ϑ as the effect scale. It should, however, be noted that the standardized coefficient depends 299

on the standard deviation of the predictor and thus on the design of the experiment in a fixed 300

design situation. In this sense, it does not conform to the principle of focussing on an effect 301

parameter of the model that is independent of choices for obtaining data to estimate it. 302

Clearly, the two samples problem discussed above is a special case of simple regression, 303

and the effect ϑ introduced for that problem agrees with the effect defined here. 304

Correlation. Before displaying the formulas for a correlation, let us discuss its suitability 305

as an effect. The related question is: “Is there a (monotonic, or even linear) relationship 306

between the variables Y (1) and Y (2)?” According to the basic theme, we need to insert the 307

word “relevant” into this question. But this does not necessarily make the question relevant. 308

What would be the practical use of knowing that there is a relationship? It may be that 309

• there is a causal relationship; then, the problem is one of simple regression, as just 310

discussed, since the relationship is then asymmetic, from a cause x the a response Y ; 311

• one of the variables should be used to infer (“predict”) the values of the other; again 312

a regression problem; 313

• in an exploratory phase, the causes of a relationship may be indirect, both variables 314

being related to common causes, and this should lead to further investigations; this is 315

then a justified use of the correlation as a parameter, which warrants its treatment 316

here. 317

The Pearson correlation is 318

ρ =
E
(
(Y (1) − µ(1))(Y (2) − µ(2))

)
√
E
(
(Y (1) − µ(1))2

)
E
(
(Y (2) − µ(2))2

) , µ(k) = E
(
Y (k)

)

ρ̂ = S12

/√
S11S22 , Sjk =

∑
i
(Y

(j)
i − Y (j)

)(Y
(k)
i − Y (k)

) .
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Fisher’s well-known variance stabilizing transformation provides the natural way to treat the 319

case of a simple linear correlation, 320

ϑ = g(ρ) = 1
2 log((1 + ρ)/(1− ρ)) , ϑ̂ = g(ρ̂) , n var

(
ϑ̂
)
≈ 1/(1− 3/n) ≈ V = 1 . (7)

It is worth noting that it defines a logistic scale, going to infinity when the parameter ρ 321

approaches its extreme values 1 or −1. When large correlations are compared, the effect as 322

measured by the difference of ϑ values is approximately 323

ϑ = ϑ1 − ϑ0 ≈ 1
2 log((1− ρ0)/(1− ρ1)), that is, it compares the complements to the 324

correlation on a relative (logarithmic) scale. 325

3.4 Multiple regression and analysis of variance 326

This and the following subsections are technically more involved. Readers are encouraged to 327

continue with Section 4 in a first run. 328

In the multiple regression model, the predictor is multivariate, 329

Yi = α+ x>i β + εi , εi ∼ N
(
0, σ2

)
. (8)

The model also applies to (fixed effects) analysis of variance or general linear models, where 330

a categorical predictor variable (often called a factor) leads to a group of components in the 331

predictor vector xi. 332

Since we set out to ask scientifically relevant questions, a distinction must be made 333

between two fundamentally different situations in which the model is proposed. 334

• In technical applications, the x values are chosen by the experimenter and are 335

therefore fixed numbers. Then, a typical question is whether changing the values from 336

an x0 to x1 evokes a relevant change in the target variable Y . This translates into the 337

relevance of single coefficients βj or of several of them. 338

• In the sciences, the values of the predictor variables are often also random, and there 339

is a joint distribution of X and Y . A very common type of question asks whether a 340

predictor variable or a group of them have a relevant influence on the target variable. 341

The naive interpretation of influence here is that, as in the foregoing situation, an 342

increase of the variable X(j) by one unit leads to a change given by βj in the target 343

variable Y . However, this is not necessarily true since even if such an intervention may 344

be possible, it can cause changes in the other predictors that lead to a compensation 345

or an enhancement of the effect described by βj . Thus, the question if βj is relevantly 346

different from 0 is of unclear scientific merit. 347

A legitimate use of the model is prediction of Y on the basis of the predictors. Then, 348

one may ask if a preditor or a group of them reduce the prediction error by a relevant 349

amount. 350

It is of course also legitimate to use the model as a description of a dataset. Then, 351

statistical inference is not needed, and there is a high risk of over-interpretation of the 352

outputs obtained from the fitting functions. 353

• An intermediate situation can occur if the researcher can select observation units that 354

differ mainly in the values of a given subset of predictor variables. Then, any 355

remaining predictors should be excluded from the model, and the situation can be 356

interpreted, with caution, as in the experimental situation. 357
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Fixed design. Let us first consider the experimental situation, where the effect of interest 358

is a part of β. If it reduces to a single coefficient βj , the other components are part of φ, 359

and the formulas for simple regression generalize in a straightforward way, 360

β̂j =
(
CX>Y

)
j
, C =

(
X>X

)−1
, Vj = nσ2Cjj ,

where X is the design matrix including a column of ones for the intercept term. The 361

standardized coefficient, measuring the effect of increasing x(j) by one standard deviation sj 362

of x(j) is now β∗j = βjsj/
√
MSY, where sj is the standard deviation of the predictor X(j). 363

Again, I prefer the standardization by the standard deviation of the random deviations ε, 364

ϑj = βjsj/σ . (9)

If a categorical predictor is in the focus, a contrast between its levels may be identified 365

as the effect of interest. For example, a certain group may be supposed to have higher 366

values for the target variable than the average of the other groups. Then, the problem can 367

be cast in the same way as the single coefficient. 368

Often, several parameters are of interest. When they have an independent meaning, like 369

the coefficients of several predictors that can be varied independently in an experiment, they 370

are best treated as single coefficients in turn, applying modifications required by multiple 371

testing. However, in case of a categorical predictor and also as a deliberate choice, it may 372

be more adequate to consider the coefficients together as a multivariate effect, and I come 373

back to this view below (Section 3.6). Alternatively, the following approach can be followed. 374

Random design. The prediction error for predicting Y0 for a given predictor vector x0 is 375

a function of x0, the design X used for estimation of β, and the variance σ2 of the random 376

deviations. In order to simplify the situation, the predictor vector is set to all of those used 377

in the estimation and the squared prediction errors are averaged. This average still depends 378

on the design, which we assume to be random here, and on the number of observations used 379

for estimation. A further simplification just considers the remaining prediction error 380

neglecting estimation of β, which reduces to σ2. 381

In the sequel, I will use the multiple correlation R, related to the variances of the 382

random deviatons and of Y by 383

R2 = 1− σ2/var(Y ) , σ2 = (1−R2) var(Y ) .

The problem considered here asks for comparing a given “full” model, with random 384

deviation variance σ2
f , to a “reduced” model in which some components of x are 385

dropped—or the respective coefficients set to zero, leading to a variance σ2
r . A comparison 386

of variances—or other scale parameters for that matter—is best done at the logarithmic 387

scale, since relative differences are a natural way of expressing such differences (cf. Section 388

4). Then, an effect measure is 389

ϑpred = log(σr/σf ) = 1
2 log(θ) , θ =

σ2
r

σ2
f

=
1−R2

r

1−R2
f

. (10)

For simple analysis of variance, equivalent to comparison of several groups, θ reduces to 390

θ = 1
/

(1−R2
f ), where R2

f is the fraction of the target variable’s variance explained by the 391

grouping, called η2 in [9] and is between 0 and 1. 392

Note that ϑ = g̃(Rr)− g̃(Rf ), where 393

g̃(R) = − 1
2 log

(
1−R2

)
.

It is related to Fisher’s z transformation g for correlations (7) by g̃(R) = g(R)− log(1 +R) 394

and shows the same behavior for large R. 395
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The effect is estimated by plugging in σ̂f and σ̂r. The distribution can be characterized 396

by noting that 397

θ̂ =
(SSE + SSRed)/νr

SSE/νf
=
νf
νr

(
1 + F

ν

νf

)
= (νf + νF )

/
νr ≈ 1 + νF/n ,

where SSE and SSRed are the sums of squares of the error term and for the reduction of the 398

model, νf and νr are the residual degrees of freedom for the full and reduced model, 399

respectively, ν = νr − νf , and F is the usual statistic with an F distribution with ν and νf 400

degrees of freedom. It is worthwile to note that 401

νF = SSRed/σ̂2 = β̂>a v̂ar
(
β̂a

)−1
β̂a = (n− 1) ϑ̂∗2a , (11)

where βa collects the ν coefficients of the additional predictor variables in the full model 402

and ϑ̂∗a is the estimate of the respective standardized effect norm to be introduced below 403

(15) (the proof is given in the Appendix). Let ϑ∗a be defined by 404

ϑ∗2a = β>avar
(
β̂a

)−1
βa
/
n , (12)

the corresponding squared norm of the true βa. I call it the “drop effect” of the term(s) 405

defining βa. It is related to the prediction error effect by 406

ϑpred = 1
2 log

(
1 + ϑ∗2a

)
≈ 1

2ϑ
∗2
a , (13)

the approximation being useful for reasonably small ϑ∗a. 407

The effect measure ϑ∗a and the corresponding ϑpred can be calculated for the comparison 408

between the full model and the reductions obtained by dropping each term in turn. For 409

continuous predictors, this leads to alternative measures of effect, ϑ∗j and ϑpred,j , to the one 410

defined by the standardized coefficient introduced for fixed designs. In this case, the square 411

root ϑ∗j of ϑ∗2j in (12) shall carry the sign of the coefficient. It is then related to ϑj by 412

ϑ∗j = ϑj

√
1−R2

j , (14)

where Rj is the multiple correlation between predictor X(j) and the other predictors (see 413

Appendix), and it can be interpreted as the effect on the response (in σ units) of increasing 414

the predictor X(j), orthogonalized on the other predictors, by one of its standard deviations. 415

If the predictor X(j) is orthogonal to the others, ϑj and ϑ
∗
j coincide. 416

The distribution of ϑ̂∗2a is an F distribution according to (11), with non-centrality 417

λ = nϑ∗2a . A confidence interval cannot be obtained from asymptotic results since the F 418

distribution with low numerator degrees of freedom and low non-centrality is skewed and its 419

variance depends on the exptected value. Therefore, a confidence interval for its 420

non-centrality must be obtained by finding numerical solutions for λ in qF(ν,νf ,λ)(α) = F , 421

for α = 0.975 and = 0.025. The respective values are then transformed to confidence limits 422

of ϑpred by (13). 423
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3.5 Other regression models 424

Logistic regression. For a binary response variable Y , logistic regression provides the 425

most well established and successful model. It reads 426

g(P(Y =1)) = α+ x>i β + εi , g(p) = log(p/(1− p)) .

The parameters of interest are again the coefficients βj . The model emerges if the (latent) 427

variable Z follows the ordinary regression model (8) with an random deviation ε following a 428

standard logistic distribution instead of the normal one, and the observed response Y is a 429

binary classification of it, Y = 1 if Z > c for some c. Since the definition of an effect should 430

be as independent as possible of the way the model is assessed through observations, the 431

standardized coefficients should be the same in the model for Z and for Y . Thus, 432

ϑj = βjsj/σ with a suitable σ. Since the logistic distribution with scale parameter σ = 5/3 433

has P(|Z| < 1) = 0.67 like the standard normal distribution, this value is suggested, and 434

ϑj = 0.6βjsj .

In case of overdispersion, this needs to be divided by the square root of respective parameter 435

φ. 436

The argument also applies to proportional odds logistic regression for ordered response 437

variables. 438

In other generalized linear models, like Poisson regression for responses quantifying 439

frequencies, I do not find a plausible version of σ and suggest to use ϑj = βjsj . 440

Classification. A classical subject of multivariate statistics is discriminant analysis as 441

introduced by R.A. Fisher using as as example the dataset on iris flowers that has become 442

the most well-known dataset in history. The data follows the model (8) with multivariate Y i 443

and εi and predictors xi corresponding to the categorical variable “Species.” The interest is 444

not in the multivariate differences between the expected values of the target variables for 445

the three species but in the ability to determine the correct group from the variables’ values. 446

If there were only two groups, the problem is better cast by regarding the binary variable 447

“group” as random and the characteristics of the observations—orchids in the example—as 448

predictors and applying the model of logistic regression. For more than two groups, this 449

generalizes to a multinomial regression and leads to a problem of multiple comparisons. This 450

complication goes beyond the scope of the present paper. 451

3.6 Multivariate effects 452

The general model (6) includes the case of a multivariate parameter of interest θ. The test 453

for the null hypothesis θ = 0 is the well-known Chisquared test. The question then arises 454

what a relevant effect should be in this context. A suitable answer is that an effect is 455

relevant if a suitable norm of it exceeds a certain threshold. 456

A variance standardized effect is determined by a square root of V−1 as 457

ϑ = B θ , B>B = V−1 ,

such that var(ϑ) = I. The context may suggest a suitable root, often the Cholesky factor or 458

the symmetric one. 459

The standardized effect’s (Euclidean) norm ϑ∗ = ‖ϑ‖ equals the Mahalanobis norm ∆ of 460

θ given by the covariance matrix V. The range of irrelevant effects is then given by 461

ϑ∗2 = ∆2(θ,V) = θ>V−1θ < ζ2 , (15)

and the confidence region, by 462

{
θ | n ∆2

(
θ̂ − θ,V

)
≤ q
}

=
{
ϑ | n ‖ϑ̂− ϑ‖2 ≤ q

}
,
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where q is the 1− α = 0.95 quantile of the Chisquared or the appropriate F distribution. 463

The two do not intersect if ∆(θ,V) > ζ +
√
q/n in which case the effect is clearly relevant, 464

case Rlv (Section 2.3). The confidence region is contained in the ellipsoid of irrelevant 465

effects if ∆(θ,V) ≤ ζ −
√
q/n, called case Ngl. 466

Note that in this treatment of the problem, the alternative hypothesis is no longer 467

one-sided for the parameter of interest itself—although it is, for the Mahalanobis norm—, 468

since there is no natural ordering in the multivariate space. This shows an intrinsic difficulty 469

of the present approach in this case. However, the limitation mirrors the difficulty of asking 470

scientifically relevent questions to begin with: What would be an effect that leads to new 471

scientific insight? 472

In order to fix ideas, let us consider a multivariate regression model. A scientific question 473

may concern an intrinsically multivariate target variable. For example, Y may be a 474

characterization of color or of shape, and the multivariate regression model may describe the 475

effect of a treatment on the expected value of Y . In the case of a single predictor, e.g., in a 476

two-groups situation, the parameter of interest θ in (6) has a direct interpretation as the 477

difference of colors, shapes or the like, and a range of relevant differences may be 478

determined using a norm that characterizes distinguishable colors or shapes, which will be 479

different from V. In more general situations, it seems difficult to define the effect in a way 480

that leads to a practical interpretation. 481

If the target variable Y measures different aspects of interest, like quality, robustness and 482

price of a product or the abundance of different species in an environment, the scientific 483

problem itself is a composite of problems that should be regarded in their own right and 484

treated as univariate problems in turn. 485

4 Relevance thresholds 486

The arguments in the Introduction have lead to the molesting requirement of choosing a 487

threshold of relevance, ζ. Ideally, such a choice is based on the specific scientific problem 488

under study. However, researchers will likely hesitate to take such a decision and to argue 489

for it. Conventions facilitate such a burden, and it is foreseeable that rules will be invented 490

and adhered to sooner or later, analogously to the ubiquitous fixation of the testing level 491

α = 5 %. Therefore, some considerations about simple choices of the relevance threshold in 492

typical situations follow here. 493

Relative effect. General intuition may often lead to an agreeable threshold expressed as 494

a percentage. For example, for a treatment to lower blood pressure, a reduction by 10% 495

may appear relevant according to common sense. Admittedly, this value is as arbitrary as 496

the 5 % testing level. Physicians should determine if such a change usually entails a relevant 497

effect on the patients’ health, and subsequently, a corresponding standard might be 498

generally accepted for treatments of high blood pressure. 499

When percentage changes are a natural way to describe an effect, it is appropriate to 500

express it formally on the log scale, like ϑ = E
(
log
(
Y (1)

))
− E

(
log
(
Y (0)

))
in the two 501

samples situation. Then, one might set ζ = 0.1 for a 10 % relevance threshold for the 502

change. 503

Log-percent. To be more precise, let the “log-percent” scale for relative effects be 504

defined as 100 · ϑ and indicate it as, e.g., 8.4 %`. For small percentages, the ordinary 505

“percent change” and the “log-percent change” are approximately equal. The new scale has 506

the advantage of being symmetric in the two values generating the change, and therefore, 507

the discussion whether to use the first or the second as a basis is obsolete. A change by 508

100 %` equals an increase of 100 % (e− 1) = 171 % ordinary percent, or a decrease by 509

100 % (1− 1/e) = 63 % in reverse direction. Using this scale, the suggested threshold is 510

ζ = 10 %`. 511
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One and two samples, regression coefficients. An established “small” value of 512

Cohen’s d is 20 % ([8]). It may serve as the threshold for d. Since d = 2ϑ in the case of 513

equal group sizes, this leads to ζ = 10 % for ϑ, which can be used also for unbalanced 514

groups, a single sample as well as regression coefficients according to the discussion in the 515

foregoing section. It also extends to drop effects for terms with a single degree of freedom. 516

However, this threshold transforms to a tiny effect ϑpred of 0.5 %` on the difference in 517

lengths of prediction intervals according to (13). A threshold of 5 %` seems be more 518

appropriate here. This shows again that the scientific question should guide the choice of 519

the effect scale and of the relevance threshold! 520

Correlation. In the two samples situation, considering the xi as random, 521

ρ2 = ν0ν1d
2/(1 + ν0ν1d

2) , (16)

and the threshold of 20 % on Cohen’s d leads approximately again to ζ = 0.1 (see Appendix 522

for the calculation). However, if correlations are compared between each other rather than 523

to zero, a transformed correlation is more suitable as an effect measure. If the Fisher 524

transformation is used, then the same threshold can be applied, since ϑ = g(ρ) ≈ ρ for 525

ρ ≤ 0.1. Since g is a logarithmic transformation, I write ζ = 10 %`. 526

Proportions. The comparison of two proportions is a special case of logistic regression, 527

with β equal to the log odds ratio and MSX = ν0ν1 as for the two samples case. If the 528

threshold for coefficient effects, 10 %, is used and the two groups have the same size, this 529

leads to a threshold of ζ = 33 %` for the log odds ratio, which appears quite high in this 530

situation. 531

On the other hand, for low risks, the recommendation for relative effects applies. For 532

larger probabilities p, the transformation turns into the logit, ϑ = log(p/(1− p)), and 533

“log-percent” turn into “logit-percent.” The threshold ζ = 10 %` may still be used in this 534

scale. Back-transformation to probabilities p leads to a change from p = 0.5 to p = 0.525 535

being relevant, and from 25 % to 27 %,from 10 % to 10.9 %, and from 2 % to 2.2 %. 536

Log-linear models. Several useful models connect the logarithm of the expected 537

response with a linear combination of the predictors, notably Poisson regression with the 538

logarithm as the canonical link function, log-linear models for frequencies, and Weibull 539

regression, a standard model for reliability and survival data. Here, the consideration of a 540

relative effect applies again. An increase of 0.1 in the linear predictor leads to an increase of 541

10 % in the expected value, and therefore, ζ = 10 %` seems appropriate for the standardized 542

coefficients ϑj = βjsj . 543

Summary. The scales and thresholds for the different models that are recommended here 544

for the case that the scientific context does not suggest any choices are listed in Table 2. 545

5 Description of results 546

It is common practice to report the statistical significance of results by a p-value in 547

parenthesis, like “The treatment has a significant effect (p = 0.04),” and estimated values 548

are often decorated with asterisks to indicate their p-values in symbolized form. If such short 549

descriptions are desired, secured relevance values should be given. If Rls > 1, the effect is 550

relevant, if it is > 0, it is significant in the traditional sense, and these cases can be 551

distingished in even shorter form in tables by plusses or an asterisk as symbols as follows: 552

∗ for significant, that is, Rls > 0; + for relevant (Rls > 1); ++ for Rls > 2; and +++ for 553

Rls > 5. To make these indications well-defined, the relevance threshold ζ must be declared 554

either for a whole paper or alongside the indications, like “Rls = 1.34 (ζ = 10 %`).” 555
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Table 2. Models, recommended effect scales and relevance thresholds

Problem Basic model Effect ϑ = g(θ) Rel. thresh. ζ

One, or two N
(
µ, σ2

)
µ/σ 10 %

paired samples

Two independent N
(
µk, σ

2
)

d = (µ1 − µ0)/σ 20 %
samples ϑ = (µ1 − µ0)

√
ν0ν1/σ 10 %

Regression Yi = α+ x>i β + εi
εi ∼ N

(
0, σ2

)
coefficients βj

√
MSX(j)

/
σ 10 %

prediction error − 1
2 log

(
1−R2

)
0.5 %` or 5 %`

Logistic regression g(Yi = 1) = α+ x>i β βj0.6
√

MSX(j)
/√

φ 10 %`

Relative Difference log(Y ) ∼ N
(
µk, σ

2
)

log(µ1/µ0) 10 %`

Proportion B(n, p) log(p/(1− p)) 33 %` or 10 %`

Correlation Y ∼ N2

(
µ, |Σ

)

ρ = |Σ12/
√
|Σ11 |Σ22

1
2 log((1 + ρ)/(1− ρ)) 10 %`

Examples. The first examples are taken from the first “manylabs” project about 556

replicability of findings in psychology ([10]), since for that study, the scientific questions had 557

been judged to deserve replication and full data for the replication is easily available. 558

The original studies were replicated in each of 36 institutions. Here, I pick the replication 559

at Penn State University of the following item: “Students were asked to guesstimate the 560

height of Mount Everest. One group was ‘anchored’ by telling them that it was more than 561

2000 feet, the other group was told that it was less than 45,500 feet. The hypothesis was 562

that respondents would be influenced by their ‘anchor,’ such that the first group would 563

produce smaller numbers than the second” ([11]). The true height is 29,029 feet. 564

According to the discussion in Section 4, the data is analyzed here on the logarithmic 565

scale, and the threshold of 10 %` is applied. The data, reduced to the first 20 observations 566

for simplicity, are given in Table 3. 567

Table 3. Data for the anchoring example in 1,000 feet
group ”low”, n0 = 8 2.3 2.7 3 3 3.1 6 12 15

group ”high”, n1 = 12 25 32 34 40 40 40 42.7 43.5 44 45 45 45.5

The group means of the log values are 1.52 and 3.67 (corresponding to 4,560 and 39,190 568

feet) and the standard error for their difference is 0.216 on 18 degrees of freedom. This 569

leads to a confidence interval of ϑ̂± ω̂ = 2.15± (2.10 · 0.216) = [1.70, 2.60] and 570

Sig0 = ϑ̂/ω̂ = 4.74. The relevance is Rle = 100 · ϑ̂/ζ = 2.15/0.1 = 21.5 with interval limits 571

of Rls = Rle− ω̂/ζ = 17.0 and Rlp = Rle + ω̂/ζ = 26.0. The single value notation is 572

Rls = 17.0 (ζ = 10 %`). This is an extremely clear effect. 573

A second study asked if a positive or negative formulation of the same options had an 574

effect on the choice ([12]). Confronted with a new contagious disease, the government has a 575

choice between action A that would save 200 out of 600 people or action B which would 576

save all 600 with probability 1/3. The negative description was that either (A) 400 would 577

die or (B) all 600 would die with probability 2/3. I report the results for Penn State (US) 578

and Tilburg (NL) universities. The data is summarized in Table 4, and the effect, 579

significance, and relevance, in Table 5. The secured relevance is Rls = 4.16 (ζ = 10 %`) and 580
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10.1 (ζ = 10 %`) for the two institutions, the effect is thus clearly relevant. One may ask if 581

there is a relevant (!) difference between these two studies, with a view of applying the 582

notions of this paper to the theme of replicability. This will be done in a forthcoming paper. 583

Table 4. Data for the second example
PSU Tilburg

n A B n A B

negative 48 16 32 34 6 28
positive 47 30 17 46 29 17

Table 5. Results for the second example. Relevance threshold 10 %`.
effect signif. relevance

ϑ̂ low high Sig0 Rle Rls Rlp

PSU 1.26 0.42 2.10 1.49 12.6 4.2 21.0
Tilburg 2.08 1.01 3.14 1.95 20.8 10.1 31.4

The third example is a multiple regression problem. The dataset reflects the blasting 584

activity needed for digging a freeway tunnel beneath a Swiss city. Since blasting can cause 585

damage in houses located at a small distance from the point of blasting, the charge 586

should be adjusted to keep the tremor in the basement of such a house below a threshold 587

y0. The logarithmic tremor is modelled as a linear function of the logarithmic distance 588

and charge , an additive adjustment to the house where the measurements are taken 589

(factor location), and time , a rescaled calendar day. Only part of the data for 3 590

locations are used here, see Table 6. 591

Table 6. Data for the blasting example.
charge dist loc’n time tremor charge dist loc’n time tremor

4.760 62 loc1 0.5562 4.07 3.640 55 loc1 0.7644 4.31
4.848 58 loc1 0.5699 0.71 3.708 61 loc1 0.7699 4.43
5.824 55 loc1 0.5890 6.71 3.812 46 loc2 0.7726 10.67
6.656 50 loc1 0.6082 12.23 3.725 69 loc4 0.7808 2.00
6.656 42 loc1 0.6274 10.55 3.305 67 loc1 0.7836 2.51
4.368 37 loc1 0.6384 16.90 3.744 50 loc2 0.7863 7.91
5.200 33 loc1 0.6548 16.90 3.725 65 loc4 0.7863 3.47
4.998 31 loc1 0.6685 14.99 3.725 55 loc2 0.7918 5.63
4.998 49 loc2 0.6712 8.39 3.870 61 loc4 0.8000 2.36
5.236 29 loc1 0.6849 16.42 4.765 60 loc2 0.8055 6.59
5.593 44 loc2 0.6877 12.23 1.248 59 loc4 0.8055 1.70
1.190 30 loc1 0.6904 5.03 4.644 62 loc2 0.8082 5.15
4.998 41 loc2 0.6932 12.23 5.285 56 loc4 0.8110 5.39
4.998 31 loc1 0.7041 14.27 5.285 69 loc2 0.8219 5.27
5.712 38 loc2 0.7068 23.38 0.624 53 loc4 0.8247 1.07
4.680 35 loc1 0.7123 13.91 3.986 73 loc2 0.8274 5.03
4.702 36 loc2 0.7233 14.15 2.490 51 loc4 0.8301 4.43
4.784 39 loc1 0.7260 9.95 4.390 79 loc2 0.8411 4.43
5.824 36 loc2 0.7288 13.43 4.390 50 loc4 0.8438 5.99
4.160 43 loc1 0.7425 10.55 3.870 85 loc2 0.8466 2.63
3.952 36 loc2 0.7425 20.98 3.870 50 loc4 0.8493 5.27
3.744 88 loc4 0.7452 1.52 1.768 50 loc4 0.8685 1.58
3.194 50 loc1 0.7479 7.07 2.496 51 loc4 0.0000 3.29
3.744 38 loc2 0.7507 14.51 3.640 52 loc4 0.0192 4.67
3.305 79 loc4 0.7616 1.43

An extensive table of results is shown in Table 7. The time does not show any 592

significance and therefore no relevance either. The relevances of the coefficient and drop 593

effects are related by (14). Thus, their ratio equals
√

1−R2
j and is a useful measure of 594

collinearity. 595

For the shortest description, the coefficient of log10(charge) would be indicated as 596

0.752+++. 597
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Table 7. Extensive results for the blasting expample location is a factor with 3 levels.
Relevance thresholds are 10 % for standardized coefficients and 5 %` for the prediction
effect. The columns shown in bold face should be routinely shown.

stand. coef. effect drop effect prediction eff.
term coef. df se Sig0 p.value coef. Rlp Rls Rlp Rls Rlp Rls

location 2 1.56 1.27e-03∗∗ 8.70 2.33++ 5.58 0.12 .
log10(distance) -2.022 1 0.198 -5.06 4.68e-13∗∗∗ -1.666 19.87 13.5+++ 17.82 11.94+++ 14.75 9.16+++

log10(charge) 0.752 1 0.130 2.86 7.94e-07∗∗∗ 0.959 12.85 6.3+++ 11.74 5.01+++ 8.96 2.20++

time 0.062 1 0.138 0.22 0.66 0.069 3.68 -2.3− 3.45 0.00 1.00 0.000

The results for these examples have been otained by the R package relevance , 598

available from https://r-forge.r-project.org . 599

6 Relevance instead of p-values 600

The deficiencies of the common use of p-values has lead to a fierce debate and a flood of 601

papers, often resulting in the vague conclusion that the accused concept should be used 602

with caution. Some alternatives have nevertheless been given, such as the “Second 603

Generation P-Value” by Blume et al. [1], which I have discussed above. Bayesian methods 604

have also been advertized as a methodology that gives a more differentiated picture. None 605

of these proposals have yet been widely applied. 606

Here, I have argued that the origin of the crisis roots deeper: The misuse of the p-value 607

reflects a way to avoid the effort of asking relevant scientific questions to begin with. 608

Typical problems in empirical research often concern a quantity like the effect of a treatment 609

on a specified target variable. These problems are only well-posed if there is a threshold of 610

relevance. I am not the first to advocate this requirement, I emphasize its importance again 611

and develop it further into the novel measure of relevance. It is essential to keep in mind 612

that the threshold should be determined only by the scientific problem and therefore must 613

not depend on the design of the study that estimates the effect. 614

The paradigm of null hypothesis significance testing that is so well established asks for 615

the choice of a threshold: the significance level α of the test, or the confidence level 1− α. 616

In principle, α could be arbitrarily chosen, but tradition has fixed it at 5% for most scientific 617

fields. The relevance threshold introduces yet another choice to be made. A careful 618

selection should be sought in each scientific study. Since this is a cumbersome requirement, 619

conventions have been proposed in this paper for the most common situations. 620

The traditional method to convey the assessment of an effect in a more informative way 621

than the p-value is the confidence interval. Its downside is that it consists of two numbers 622

that carry the measurement unit of the effect and are therefore not directly comparable 623

between studies. The significance measure introduced here is a single, standardized number 624

that conveys the essentials of the confidence interval. It depends, however, again on a given 625

value of the effect. When this value is 0, the basic flaw of the p-value is inherited. 626

Combining it with the relevance threshold is a necessary step to give an appropriate 627

characterization of the relevance of a result. 628

The combination is best achieved by focussing on the confidence interval for the 629

relevance measure, with boundaries called “secured” and “potential” relevance. The secured 630

relevance Rls may even be used as a single number characterizing the knowledge gained 631

about the effect of interest. 632

A conclusion from the p-value debate is that a simple yes-no decision about the result is 633

misleading. Since our thinking likes categorization, I have introduced labels characterizing 634

the comparison of the confidence interval with both the zero effect and the relevance 635

threshold. It is defined on the basis of the two significance values Sig0 and Sigζ or of the 636

two relevance limits Rls and Rlp. 637
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The significance and relevance measures and the classification are straightforward 638

enhancements of concepts that are well established and ubiquously known. There is hope 639

that they can form a new standard of presenting statistical results. 640

Replicability. The p-value debate is closely related to and often confounded with the 641

reproducibility crisis. In fact, there is ample evidence that in several fields of science, when a 642

statistical study is replicated, a significant effect found in the original study turns out to be 643

non-significant in the replication, thereby formally failing the fundamental requirement of 644

reproducibility of empirical science. While many causes are suggested and found for such 645

failures, prominent ones are tied to the problems with statistical testing and the p-value 646

discussed in the Introduction. Here is the argument: 647

The p-value was originally advocated as a filter against publication of results that may 648

be due to pure randomness. It was soon converted in a tool to generate “significant” results 649

regardless of their scientific relevance. This leads to so-called selection bias: When many 650

studies examine small true effects with limited precision, some of them will turn out 651

significant by chance, will thus pass the filter and be published, whereas the non-significant 652

ones will go unnoticed. These studies will have a low probability of being successfully 653

replicated. 654

Clearly, using the criterion of a relevant secured effect (case Rlv) as a filter would reduce 655

the frequency of phony results drastically: A relevant result in this sense will usually have a 656

high probability of showing at least a significant estimate (case Amb.Sig) upon 657

replication—unless the precision is low or data snooping has been extensively applied to get 658

it. The concepts introduced here can be profitably applied to assess replications of results 659

also in more depth, as will be shown in a forthcoming paper. 660

7 Conclusion 661

The p-value has been (mis-) used to express the results of statistical data analyses for too 662

long, in spite of the extensive discussions about the bad consequences of this practice for 663

science. 664

It is time to introduce a new concept for the presentation of the statistical inference for 665

an effect under study. The measure of relevance introduced here is suitable to achieve this 666

goal. It needs the choice of a relevance threshold for the effect of interest, a requirement 667

posed by the desire to ask a scientifically meaningful question to begin with. 668

The goal of a typical statistical enquiry is to prove that an effect is relevant. Based on 669

the measures “secured relevance,” Rls, and “potential relevance.” Rlp, either this can be 670

achieved, or a “negligible” effect can be found—or the answer may be “ambiguous.” 671

Application of these concepts will enhance reproducibility: When relevant effects are 672

examined rather than merely significant ones, the replication will much more often turn out 673

to be at least significant in the replication. 674
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Appendix 704

Derivation of (11), νF = β̂>a v̂ar
(
β̂a

)−1
β̂a. 705

The general formula for the inversion of a partitioned matrix reads 706

[
A B
C D

]−1
=

[
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
.

Let X = [Xr Xa] and 707

K =
(
X>rXr

)−1
, H = XrKX>r

M−1 = X>a(I−H)Xa , G = XaMX>a .

Inverting X>X then leads to 708

(
X>X

)−1
=

[
K + KX>rXaMX>aXrK −KX>rXaM

−MX>aXrK M

]

=

[
K + KX>rGXrK −KX>rXaM
−MX>aXrK M

]

(
X>X

)−1
X> =

[
KX>r + KX>rGXrKX>r −KX>rXaMX>a

−MX>aXrKX>r + MX>a

]

=

[
KX>r (I + GH−G)

MX>a(I−H)

]

X
(
X>X

)−1
X> = H(I−G−GH) + G(I−H) = H + (I−H)G(I−H)
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Since β̂ = (X>X)−1X>Y , 709

β̂a = MX>a(I−H)Y

β̂>aM−1β̂a = Y>(I−H)G(I−H)Y

SSRed = −(SSE− SSR) = Y>Y − Y>X
(
X>X

)−1
X>Y −

(
Y>Y − Y>HY

)

= Y> (H + (I−H)G(I−H)−H)Y = β̂>aM−1β̂a

SSRed/σ̂2 = β̂>a v̂ar
(
β̂a

)−1
β̂a .

If βa is one-dimensional, Xa = X(j), then 710

M−1 = X(j)>(I−H)X(j) = ||X(j) −X(j)||2(1−R2
j )

where Rj is the multiple correlation between X(j) and the other predictors, Xr, and 711

therefore, 712

ϑ̂∗2j = (n− 1) β̂2
j

/
v̂ar
(
β̂j

)
= (n− 1) β̂2

j v̂ar
(
X(j)

)
(1−R2

j )/σ̂
2 = ϑ̂2j (1−R2

j ) .

Derivation of (16), ρ2 = ν0ν1d
2/(1 + ν0ν1d

2), assuming that X = Y (1) is binary, 713

P(X = k) = νk for k = 0, 1, and Y |X=k ∼ N
(
µk, σ

2
)
, d = (µ1 − µ0)/σ. Let 714

∆ = µ1 − µ0, Y = Y (2). 715

E(X) = ν1 var(X) = ν0ν1

E(Y ) = µ0 + ν1∆

E
(
Y 2
)

= σ2 + ν0µ
2
0 + ν1(µ0 + ∆)2

var(Y ) = σ2 + ν0µ
2
0 + ν1µ

2
0 + 2ν1µ0∆ + ν1∆2 −

(
µ2
0 + ν21∆2 + 2ν1µ0∆

)

= σ2 + ν0ν1∆2

E(XY ) = ν1µ1

E((X − E(X))(Y − E(Y )))

= ν1µ1 − ν1(µ0 + ν1∆) = ν1(µ1 − µ0)− ν21∆ = ν0ν1∆

ρ2 = (ν0ν1∆)2
/
ν0ν1

(
σ2 + ν0ν1∆2

)
= ν0ν1d

2
/(

1 + ν0ν1d
2
)
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