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Abstract

The Lasso is an attractive regularisation method for high dimensional regression.
It combines variable selection with an efficient computational procedure. However, the
rate of convergence of the Lasso is slow for some sparse high dimensional data, where the
number of predictor variables is growing fast with the number of observations. More-
over, many noise variables are selected if the estimator is chosen by cross-validation. It
is shown that the contradicting demands of an efficient computational procedure and
fast convergence rates of the `2-loss can be overcome by a two-stage procedure, termed
the relaxed Lasso. For orthogonal designs, the relaxed Lasso provides a continuum
of solutions that include both soft- and hard-thresholding of estimators. The relaxed
Lasso solutions include all regular Lasso solutions and computation of all relaxed Lasso
solutions is often identically expensive as computing all regular Lasso solutions. The-
oretical and numerical results demonstrate that the relaxed Lasso produces sparser
models with equal or lower prediction loss than the regular Lasso estimator for high-
dimensional data.

1 Introduction

The current work is motivated by linear prediction for high dimensional data, where the
number of predictor variables p is very large, possibly very much larger than the number of
observations n (e.g. van de Geer and van Houwelingen, 2004). Regularisation is clearly of
central importance for these high dimensional problems.

There are many criteria to consider when choosing an appropriate regularisation method.
First, not all regularisation procedures are adequate for the high dimensional case. The non-
negative Garotte (Breiman, 1995) is for example a promising regularisation method. How-
ever, it is not suited for the case p > n as it requires computation of the OLS-estimator, which
is unavailable in this case. An important criterion in the presence of many predictor variables
is the computational complexity of the procedure. Many regularisation procedures with oth-
erwise attractive features involve, unfortunately, minimization of a non-convex function (e.g.
Fan and Li, 2001; Tsybakov and van de Geer, 2005). For high dimensional problems, it is
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in general very costly to find an (approximate) solution in this case, due to the presence of
local minima in the objective function.

For Bridge estimators, which were proposed in Frank and Friedman (1993), we study in
the following the tradeoff between computational complexity on the one hand and (asymp-
totic) properties of the estimators on the other hand. Let X = (X1, . . . , Xp) be a p-
dimensional predictor variable and Y a response variable of interest. For n independent
observations (Yi, Xi), i = 1, . . . , n, of (Y,X), Bridge estimators are defined for λ, γ ∈ [0,∞)
as

β̂λ,γ = arg min
β

n−1

n∑
i=1

(Yi −XT
i β)2 + λ‖β‖γ, (1)

where ‖β‖γ =
∑

k∈{1,...,p} |βk|γ is the `γ-norm of the vector of coefficients, and γ is typically

in the range [0, 2].
For γ = 0, Bridge estimation corresponds to ordinary model selection. Ridge regression

is obtained for γ = 2, while γ = 1 is equivalent to the Lasso proposed in Tibshirani (1996).
Computation of the estimator (1) involves minimization of a non-convex function if γ < 1,
while the function is convex for γ ≥ 1. Since optimisation of a non-convex function in
a high dimensional setting is very difficult, Bridge estimation with γ ≥ 1 is an attractive
choice. However, for values of γ > 1, the shrinkage of estimators towards zero increases
with the magnitude of the parameter being estimated (Knight and Fu, 2000). For the Lasso
(γ = 1), the shrinkage is constant irrespective of the magnitude of the parameter being
estimated (at least for orthogonal designs, where regularisation with the Lasso is equivalent
to soft-thresholding of the estimates). It was recognised in Fan and Li (2001) that this
leads to undesirable properties (in terms of prediction) of the resulting estimator. It was
first suggested by Huber (1973) to examine the asymptotic properties for a growing number
p = pn of predictor variables as a function of the number of observations n, see as well
Fan and Peng (2004). It will be shown below that the shrinkage of the Lasso leads to
a low convergence rate of the `2-loss for high dimensional problems where the number of
parameters p = pn is growing almost exponentially fast with n, so that pn � n.

For γ < 1, the shrinkage of estimates decreases with increasing magnitude of the param-
eter being estimated and faster convergence rates can thus in general be achieved (see e.g.
Knight and Fu, 2000 and, for classification, Tsybakov and van de Geer, 2005). However, the
fact remains that for γ < 1 a non-convex optimization problem has to be solved.

There is no value of γ for which an entirely satisfactory compromise is achieved between
low computational complexity on the one hand and fast convergence rates on the other hand.
In this paper, it is shown that a two-stage procedure, termed relaxed Lasso, can work around
this problem. The method has low computational complexity (the computational burden
is often identical to that of an ordinary Lasso solution) and, unlike the Lasso, convergence
rates are fast, irrespective of the growth rate of the number of predictor variables. Moreover,
relaxed Lasso leads to consistent variable selection under a prediction-optimal choice of
the penalty parameters, which does not hold true for ordinary Lasso solutions in a high
dimensional setting.
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2 Relaxed Lasso

We define relaxed Lasso estimation and illustrate the properties of the relaxed Lasso esti-
mators for an orthogonal design. A two-stage algorithm for computing the relaxed Lasso
estimator is then proposed, followed by a few remarks about extending the procedure to
generalized linear models (McCullagh and Nelder, 1989).

Recall that the Lasso estimator under a squared error loss is defined in Tibshirani (1996)
for λ ∈ [0,∞) as

β̂λ = arg min
β

n−1

n∑
i=1

(Yi −XT
i β)2 + λ‖β‖1. (2)

The Lasso estimator is a special case of the Bridge estimator (1), obtained by setting γ = 1.
The set of predictor variables selected by the Lasso estimator β̂λ is denoted by Mλ,

Mλ = {1 ≤ k ≤ p|β̂λ
k 6= 0}. (3)

For sufficiently large penalties λ (e.g. for λ > 2 maxk n−1
∑n

i=1 YiX
k
i ), the selected model

is the empty set, Mλ = ∅, as all components of the estimator (2) are identical to zero. In
the absence of a `1-penalty and if the number of variables p is smaller than the number of
observations n, all predictor variables are in general selected, so that M0 = {1, . . . , p} in
this case.

The `1-penalty for the ordinary Lasso-estimator (2) has two effects, model selection and
shrinkage estimation. On the one hand, a certain set of coefficients is set to zero and hence
excluded from the selected model. On the other hand, for all variables in the selected model
Mλ, coefficients are shrunken towards zero compared to the least-squares solution. These
two effects are clearly related and can be best understood in the context of orthogonal
design as soft-thresholding of the coefficients. Nevertheless, it is not immediately obvious
whether it is indeed optimal to control these two effects, model selection on the one hand
and shrinkage estimation on the other hand, by a single parameter only. As an example,
it might be desirable in some situations to estimate the coefficients of all selected variables
without shrinkage, corresponding to a hard-thresholding of the coefficients.

As a generalisation of both soft- and hard-thresholding, we control model selection and
shrinkage estimation by two separate parameters λ and φ with the relaxed Lasso estimator.

Definition 1 The relaxed Lasso estimator is defined for λ ∈ [0,∞) and φ ∈ (0, 1] as

β̂λ,φ = arg min
β

n−1

n∑
i=1

(Yi −XT
i {β · 1Mλ

})2 + φλ‖β‖1, (4)

where 1Mλ
is the indicator function on the set of variables Mλ ⊆ {1, . . . , p} so that for all

k ∈ {1, . . . , p},

{β · 1Mλ
}k =

{
0 k /∈Mλ,

βk k ∈Mλ.
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Note that only predictor variables in the set Mλ are considered for the relaxed Lasso es-
timator. The parameter λ controls thus the variable selection part, as in ordinary Lasso
estimation. The relaxation parameter φ controls on the other hand the shrinkage of coef-
ficients. If φ = 1, the Lasso and relaxed Lasso estimators are identical. For φ < 1, the
shrinkage of coefficients in the selected model is reduced compared to ordinary Lasso estima-
tion. The case of φ = 0 needs special consideration, as the definition above would produce
a degenerate solution. In the following, we define the relaxed Lasso estimator for φ = 0 as
the limit of the above definition for φ → 0. In this case, all coefficients in the model Mλ are
estimated by the OLS-solution. This estimator (for φ = 0) was already proposed in Efron
et al. (2004) as Lars-OLS hybrid, “using Lars to find the model but not to estimate the co-
efficients” (Efron et al., 2004). The reduction of the sum of squared residuals of this hybrid
method over the ordinary Lasso estimator was found to be small for the studied dataset,
which contained 10 predictor variables only.

We will show further below that the gains with relaxed Lasso estimation (adaptive φ)
compared to ordinary Lasso estimation (φ = 1) can be very large. Moreover, relaxed Lasso
is producing in most cases better results than the Lars-OLS hybrid (φ = 0), as relaxed Lasso
can adapt the amount of shrinkage to the structure of the underlying data.

An algorithm is developed to compute the exact solutions of the relaxed Lasso estimator.
The parameters λ and φ can then be chosen e.g. by cross-validation. The algorithm is based
on the Lars-algorithm by Efron et al. (2004). As the relaxed Lasso estimator is parameterized
by two parameters, a two-dimensional manifold has to be covered to find all solutions. The
computational burden of computing all relaxed Lasso estimators is in the worst case identical
to that of the Lars-OLS hybrid and in the best case identical to that of the Lars-algorithm.
The method is thus very well suited for high dimensional problems.

2.1 Orthogonal Design

To illustrate the properties of the relaxed Lasso estimator, it is instructive to consider an
orthogonal design. The shrinkage of various regularisation methods are shown in Figure 1
for this case. The set of solutions of the relaxed Lasso estimator is given for all k = 1, . . . , p
by

β̂λ,φ
k =


β̂0

k − φλ β̂0
k > λ,

0 |β̂0
k| ≤ λ,

β̂0
k + φλ β̂0

k < −λ,

where β̂0 is the OLS-solution. For φ = 0, hard-thresholding is achieved, while φ = 1
results -as mentioned above- in soft-thresholding, which corresponds to the Lasso solution.
The relaxed Lasso provides hence a continuum of solutions that includes soft- and hard-
thresholding, much like the set of solutions provided by the Bridge estimators (1) when
varying γ in the range [0, 1]. It can be seen in Figure 1 that the solutions to the Bridge
estimators and the relaxed Lasso solutions are indeed very similar.
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Figure 1: Comparison of shrinkage estimators as a function of the OLS-estimator β̂0. Shown
are estimators for soft-thresholding (top left), hard-thresholding (top right), the estimator
β̂λ,γ, equation (1), for γ = 0, 0.5, 0.9, and 1 (bottom left) and the relaxed Lasso estimators
β̂λ,φ for φ = 0, 1/3, 2/3, and 1 (bottom right).
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2.2 Algorithm

The main advantage of the relaxed Lasso estimator over Bridge estimation is the low compu-
tational complexity. We propose in the following a naive, easy to implement, algorithm for
computing relaxed Lasso estimators as in (4). Based on some more insight, a modification is
proposed further below so that -for many data sets- the computational effort of computing
all relaxed Lasso solutions is identical to that of solving the ordinary Lasso solutions.

Simple Algorithm.

Step 1). Compute all ordinary Lasso solutions e.g. with the Lars- algorithm in Efron
et al. (2004) under the Lasso modification. Let M1, . . . ,Mm be the resulting set of m
models. Let λ1 > . . . > λm = 0 be a sequence of penalty values so that Mλ = Mk if
and only if λ ∈ (λk, λk−1], where λ0 := ∞. (The models are not necessarily distinct,
so it is always possible to obtain such a sequence of penalty parameters.)

Step 2). For each k = 1, . . . ,m, compute all Lasso solutions on the set Mk of variables,
varying the penalty parameter between 0 and λk. The obtained set of solutions is
identical to the set of relaxed Lasso solutions β̂λ,φ for λ ∈ Λk. The relaxed Lasso
solutions for all penalty parameters are given by the union of these sets.

It is obvious that this algorithm produces all relaxed Lasso solutions, for all values of the
penalty parameters φ ∈ [0, 1] and λ > 0. The computational complexity of this algorithm
is identical to that of Lars-OLS hybrid, as the Lars iterations in Step 2) are about as
computationally intensive as ordinary least squares estimation (Efron et al., 2004).

However, this naive algorithm is not optimal in general. The computation of the ordi-
nary Lasso solutions contains information that can be exploited in the second stage, when
finding Lasso solutions for all subsets Mk, k = 1, . . . ,m of variables. Figure 2 serves as
an illustration. The “direction” in which relaxed Lasso solutions are found is identical to
the directions of ordinary Lasso solutions. These directions do not have to be computed
again. Indeed, by extrapolating the path of the ordinary Lasso solutions, all relaxed Lasso
solutions can often be found. There is an important caveat. Extrapolated Lasso solutions
are only valid relaxed Lasso solutions if and only if the extrapolations do not cross the value
zero. This is e.g. fulfilled if the ordinary Lasso estimators are monotonously increasing for a
decreasing penalty parameter λ. If, however, the extrapolations do cross zero for a set Mk,
then the Lasso has to be computed again explicitly for this set, using e.g. again the Lars-
algorithm of Efron et al. (2004).

Refined Algorithm.

Step 1). Identical to Step 1) of the simple algorithm. Compute all ordinary Lasso
solutions.
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Figure 2: Left: path of the estimators β̂λ for a data set with three variables. For large values
of λ all components are equal to zero. In the range λ ∈ (0.45, 0.75], only the first components
is nonzero. Middle: The relaxed Lasso solutions, if λ is in the range λ ∈ (0.45, 0.75]. The
direction in which the relaxed Lasso solutions are found is the same as those computed for
the ordinary Lasso solutions. The relaxed Lasso solution for φ = 0 corresponds to the OLS-
solution. Right: Likewise, relaxed Lasso solutions for the range λ ∈ (0.2, 0.45] are found by
extrapolating the Lasso solutions. Again, the solutions for φ = 0 correspond to the OLS-
solution for the two variables selected by the Lasso estimator.

Step 2). For each k = 1, . . . ,m, let δ(k) = (β̂λk − β̂λk−1)/(λk−1 − λk). This is the
direction in which solutions are found for ordinary Lasso solutions and is hence known
from Step 1). Let β̃ = β̂λk + λkδ(k). If there is at least one component l so that
sign(β̃l) 6= sign(β̂λk

l ), then relaxed Lasso solutions for λ ∈ Λk have to be computed as
in Step 2) of the simple algorithm. Otherwise all relaxed Lasso solutions for λ ∈ Λk

and φ ∈ [0, 1] are given by linear interpolation between β̂λk−1 (which corresponds to
φ = 1) and β̃ (which corresponds to φ = 0).

In the worst case, the refined algorithm is no improvement over the simple algorithm.
In the best case, all relaxed Lasso solutions are found at no extra cost, once the ordinary
Lasso solutions are computed. If Lasso solutions are e.g. monotonously increasing (for
a decreasing value of λ), then the condition about sign-equality in Step 2) of the refined
algorithm is fulfilled, and the relaxed Lasso solutions are found at no extra cost.

The computational complexity of the ordinary Lasso is O(np min{n, p}), as there are
m = O(min{n, p}) steps, each of complexity O(np). In the worst case, the computational
complexity of the relaxed Lasso is O(m2np), which is, for high dimensional problems with
p > n, identical to O(n3p), and hence slightly more expensive than the O(n2p) of the
ordinary Lasso (but equally expensive as the Lars-OLS hybrid if the least squares estimator is
computed explicitly). However, the linear scaling with the number p of variables is identical.
Moreover, as mentioned above, the scaling O(n3p) is really a worst case scenario. Often all
relaxed Lasso solutions can be found at little or no extra cost compared to the ordinary
Lasso solutions, using the refined algorithm above.
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2.3 Extensions

The method can be easily generalised to more general loss functions and generalised lin-
ear models (McCullagh and Nelder, 1989). Let `(β) be the negative log-likelihood under
parameter β. The relaxed Lasso estimator is then defined in analogy to (4) as

β̂λ,φ = arg min
β∈Mλ

`(β) + φλ‖β‖1, (5)

where β ∈Mλ is understood to be equivalent to requiring that βk = 0, for all k /∈Mλ. The
algorithm for computing the solutions for all parameter values λ, φ has the same two-stage
characteristic as for the quadratic loss function. The computational effort is again identical
to that of ordinary Lasso estimation. For this case, no exact solutions for ordinary Lasso
estimators are in general available, and the same is true for the relaxed Lasso estimators.
However, only optimisation of convex functions are required as long as the log-likelihood is
a concave function. For the Lasso, a solution has been proposed e.g. in Zhao and Yu (2004)
and could be generalized to compute all relaxed Lasso solutions.

3 Asymptotic Results

For the asymptotic results, we consider a random design. Let

X = (X1, . . . , Xp)

be a p = pn-dimensional random variable with a gaussian distribution with covariance matrix
Σ, so that X ∼ N (0, Σ). The response variable Y is a linear combination of the predictor
variables,

Y = XT β + ε, (6)

where ε ∼ N (0, σ2). We compare the risk of the Lasso estimator and the relaxed Lasso
estimator. The minimal achievable squared error loss is given by the variance σ2 of the noise
term. The random loss L(λ) of the Lasso estimator is defined by

L(λ) = E(Y −XT β̂λ)2 − σ2, (7)

where the expectation is with respect to a sample that is independent of the sample which
is used to determine the estimator. The loss L(λ, φ) of the relaxed Lasso estimator under
parameters λ, φ is defined analogously as

L(λ, φ) = E(Y −XT β̂λ,φ)2 − σ2. (8)

It is shown in the following that convergence rates for the relaxed Lasso estimator are
largely unaffected by the number of predictor variables for sparse high dimensional data. This
is in contrast to the ordinary Lasso estimator, where the convergence rate drops dramatically
for large growth rates of the number pn of predictor variables.
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3.1 Setting and Assumptions

We make a few assumptions about sparse high dimensional data. The number of predictor
variables p = pn is assumed to be growing very fast with the number of observations.

Assumption 1 For some c > 0 and 0 < ξ < 1,

log pn ∼ cnξ. (9)

In the following, a matrix is said to be diagonally dominant at value ν if the row-wise sum
of the absolute values of its non-diagonal entries are bounded by ν times the corresponding
absolute value of the diagonal element.

Assumption 2 There exists some ν < 1 so that both Σ and Σ−1 are diagonally dominant
at value ν for all n ∈ N.

Note that a diagonal dominant matrix (for any value ν > 0) is positive definite. The existence
of Σ−1 is hence already implied by the assumption about Σ. The assumption is not of critical
importance for the results, but shortens the proofs considerably.

The coefficient vector β is assumed to be sparse. For simplicity of exposition, we assume
sparseness in the `0-norm: there are a finite number q of nonzero components of β and these
are fix for all n ∈ N. W.l.o.g., the nonzero components are first in order.

Assumption 3 The vector β ∈ Rpn of coefficients is given for all n ∈ N by β = (β1, . . . , βq, 0, 0, . . .).

The true model is hence M? = {1, . . . , q}. The pn − q noise variables with zero coefficients
are nevertheless possibly correlated with the response variable. This setting is similar to
some numerical examples in Fan and Peng (2004).

As the number of non-zero coefficients is given by a finite and fixed number q, we restrict
the penalty parameter λ in the following to the range Λ, for which the number of selected
variables is less than or equal to d log n with an arbitrary large d > 0,

Λ := {λ ≥ 0 : #Mλ ≤ d log n}. (10)

This range includes all sequences λn for which the Lasso or relaxed Lasso estimates are
consistent for variable selection, as the number of true non-zero coefficients is finite and
fixed.

3.2 Slow Rates with the Ordinary Lasso

It is shown that the rate of convergence of ordinary Lasso estimators is slow if the number
of noise variables is growing fast.

Theorem 1 Under Assumptions 1-3 and independent predictor variables, that is Σ = 1, it
holds for the risk under the ordinary Lasso estimator that for any c > 0 and n →∞

P (inf
λ∈Λ

L(λ) > cn−r) → 1 ∀r > 1− ξ.
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Figure 3: Convergence rates for the Lasso and the relaxed Lasso. The parameter ξ deter-
mines the rate at which the number pn of variables grows for n, between constant (ξ = 0)
and exponential (ξ = 1). The loss under the relaxed Lasso is Op(n

−1), irrespective of ξ. The
loss under the ordinary Lasso estimator can be of oder Op(n

−r) only if r < 1 − ξ (depicted
by the grey area in the figure), no matter how the penalty parameter λ is chosen.

A proof is given in the appendix.
It is hence shown that the rate of convergence of the risk is critically determined by the

rate nξ with which the logarithm log pn of the number of predictor variables is growing to
infinity. It follows that it is impossible to have both consistent variable selection and optimal
rates for independent predictor variables with the ordinary Lasso estimator.

Adding many noise predictor variables slows down the rate of convergence for the Lasso
estimator, no matter how the penalty parameter λ is chosen. The reason for this slow
convergence in the high dimensional setting is that a large value of the penalty parameter
λ is necessary to keep the estimates of coefficients of noise predictor variables at low values.
The shrinkage of the non-zero components is then very large, leading to less than optimal
prediction; for a further discussion of this phenomenon see as well Fan and Li (2001).

3.3 Fast Rates with the Relaxed Lasso

A faster rate of convergence is achieved with the relaxed Lasso estimator than with ordinary
Lasso in this sparse high dimensional setting. Noise variables can be prevented from entering
the estimator with a high value of the penalty parameter λ, while the coefficients of selected
variables can be estimated at the usual

√
n-rate, using a relaxed penalty. It is shown in

other words that the rate of convergence of the relaxed Lasso estimator is not influenced by
the presence of many noise variables.
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Theorem 2 Under Assumptions 1-3, for n → ∞, it holds for the loss under the relaxed
Lasso estimator that

inf
λ∈Λ,φ∈[0,1]

L(λ, φ) = Op(n
−1).

A proof is given in the appendix.
The rate of convergence of the relaxed Lasso estimator (under oracle choices of the penalty

parameters) is thus shown to be uninfluenced by a fast growing number of noise variables.
The results are illustrated in Figure 3.

3.4 Choice of the Penalty Parameters by Cross-Validation

It was shown above that the rate of convergence of the relaxed Lasso estimate is not influenced
by the presence of many noise variables under an oracle choice of the penalty parameters
λ and φ (which are unknown). We show that the parameters λ, φ can be chosen by cross-
validation while still retaining the fast rate.

For K-fold cross-validation, each observation belongs to one of K partitions, each con-
sisting of ñ observations, where ñ/n → 1/K for n →∞. Let LS,ñ(λ, φ) be for S = 1, . . . , K
the empirical loss on the observations in partition S when constructing the estimator on
the set of observations different from S. Let Lcv(λ, φ) be the empirical loss under K-fold
cross-validation,

Lcv(λ, φ) = K−1

K∑
S=1

LS,ñ(λ, φ).

The penalty parameters λ̂ and φ̂ are chosen as minimizers of Lcv(λ, φ),

(λ̂, φ̂) = arg min
(λ,φ)∈Λ×[0,1]

Lcv(λ, φ).

In practice, a value of K between 5 and 10 is recommended, even though the following result
is valid for a broader range.

Theorem 3 Let L(λ̂, φ̂) be the loss of the relaxed Lasso estimate and (λ̂, φ̂) chosen by K-fold
cross-validation with 2 ≤ K < ∞. Under Assumptions 1-3, it holds that

L(λ̂, φ̂) = Op(n
−1 log2 n).

The optimal rates under oracle choices of the penalty parameters are thus almost obtained
if the penalty parameters are chosen by cross-validation. We conjecture that the cross-
validated penalty parameters lead for the relaxed Lasso estimator to consistent variable
selection; this is not the case for the Lasso, see Meinshausen and Bühlmann (2006). This
conjecture is supported by the following numerical examples.
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4 Numerical Examples

We illustrate the asymptotic results of section 3 with a few numerical examples. The response
variable follows the linear model (6). The predictor variable X follows a normal distribution
with covariance matrix Σ, where Σij = ρ|i−j| for some value of 0 ≤ ρ < 1. For ρ = 0, this
corresponds to independent predictor variables. The variance of ε in (6) is chosen so that
the signal-to-noise ratio is 0 < η < 1 (e.g. the variance of the response variable Y due to ε
is 1/η of the variance of Y due to XT β).

We consider the case where there are q variables (with q ≤ p) that “carry signal” in the
sense that βk 6= 0 for all k ≤ q and βk = 0 for all k with k > q. All components βk with
k ≤ q are double-exponentially distributed.

For various values of n between 50 and 200 and p between 50 and 800, the ordinary
Lasso estimator (φ = 1), the Lars-OLS hybrid estimator (φ = 0), and the relaxed Lasso
estimator (adaptive φ) are computed. The penalty parameters are chosen by 5-fold cross-
validation. The signal-to-noise ratio is chosen from the set η ∈ {0.2, 0.8}. The correlation
between predictor variables is chosen once as ρ = 0 (independent predictor variables) and
once as ρ = 0.3, while the number of relevant predictor variables is chosen from the set
q ∈ {5, 15, 25, 50}. For each of these settings, the three mentioned estimators are computed
100 times each. Let Lrel be the average loss of relaxed Lasso over these 100 simulations, in
the sense of (7), and likewise Lols and Llasso for Lars-OLS hybrid and Lasso, see (8).

For small q, the setting is resembling that of the theoretical considerations above and of
the numerical examples in Fan and Peng (2004). For small q, the Theorems above suggest
that the relaxed Lasso and Lars-OLS hybrid outperform Lasso estimation in terms of pre-
dictive power. On the other hand, for q = p, the Lasso is the ML estimator and one expects
it to do very well compared with the Lars-OLS hybrid for large values of q. (In a Bayesian
setting, if the prior for β is chosen to be the actual double-exponential distribution of the
components of β, the Lasso solution is the MAP estimator if q = p.)

If we knew beforehand the value of q (the number of relevant predictor variables), then
we would for optimal prediction either choose Lasso (if q is large), that is φ = 1, or Lars-OLS
hybrid (if q is small), that is φ = 0. However, we do not know the value of q. The numerical
examples illustrate how well relaxed Lasso adapts to the unknown sparsity of the underlying
data.

4.1 Number of Selected Variables.

The number of selected variables is shown in Table 1 for the Lasso estimator and in Table 2
for the relaxed Lasso. As expected, the relaxed Lasso selects roughly the correct number
of variables (or less, if the noise is high or the number of observations n is low, with the
Lars-OLS hybrid selecting even fewer variables in these cases, as can be seen from Table 3).
In contrast, ordinary Lasso often selects too many noise variables (with the cross-validated
choice of λ). For q = 5, it selects e.g. up to 34 variables. For q = 50, up to 121. Using
the considerations in the proof of Theorem 1, these numbers can be expected to grow even
higher if a larger number n of observations would be considered.
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Table 1: Average number of selected variables with the Lasso for
ρ = 0

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 17 18 20 22 25 9 9 8 9 8
100 13 23 24 27 31 10 12 15 14 17
200 11 13 27 31 34 11 13 19 22 24

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 27 30 30 27 24 10 8 8 6 7
100 26 39 44 52 53 13 15 14 16 17
200 27 35 51 59 69 18 21 26 29 30

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 36 30 23 16 12 9 7 8 7 6
100 47 65 66 61 54 15 19 16 14 11
200 48 71 96 112 121 27 30 34 31 27

Table 2: Average number of selected variables with the relaxed Lasso
for ρ = 0

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 7 6 7 5 5 6 5 6 6 4
100 5 6 6 5 5 6 8 7 6 9
200 5 4 6 5 5 5 6 12 8 8

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 19 18 18 15 12 8 6 6 6 6
100 17 19 16 17 16 10 12 10 9 12
200 15 15 16 15 13 12 14 18 18 15

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 34 25 19 12 9 8 6 6 6 5
100 44 57 55 45 34 13 17 13 11 9
200 46 57 64 71 66 23 26 29 24 19
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4.2 Comparison with Lasso.

Lasso and relaxed Lasso estimators produce nearly identical results (in terms of predictive
power) if the number q of relevant predictor variables is large, as can be seen from Table 4,
which shows the relative improvement of relaxed Lasso over ordinary Lasso,

100 · (Llasso/Lrel − 1). (11)

There is no harm when using the relaxed Lasso on such data instead of the Lasso, but
there is not much to be gained either. However, for data where there is a very large num-
ber of noise variables (e.g. small q), the relaxed Lasso estimator produces a much smaller
MSE, as expected from the previous theoretical results. The extent to which the relaxed
Lasso outperforms Lasso in this setting depends strongly on the signal-to-noise ratio η. The
improvements are larger for large η, where shrinkage of the selected components is not nec-
essary. For small η, shrinkage of the selected components is useful and an optimal procedure
chooses thus φ close to 1 for noisy problems. Indeed, the average chosen value of φ for the
relaxed Lasso is large if η is low, as can be seen from Table 6.

In the worst case, relaxed Lasso is performing only marginally worse than ordinary Lasso
and is slightly more expensive to compute. For many sparse high dimensional problems,
however, the computation of the relaxed Lasso solutions comes at no extra computational
cost and leads to sparser estimators and more accurate predictions.

4.3 Comparison with Lars-OLS Hybrid.

The theoretical conclusions suggest that Lars-OLS hybrid should do equally well for sparse
high dimensional data as relaxed Lasso. However, there are two caveats. First, the argument
holds only for data with sparse structure. If the data do not have sparse structure, Lars-OLS
hybrid is in general performing worse than Lasso. Relaxed Lasso can adapt to the amount
of sparseness (as seen from Table 6) by varying φ between 1 (for not so sparse data) to 0
(for sparse data). Table 5 shows the relative improvement of relaxed Lasso over Lars-OLS
hybrid, analogously to (11). For large values of q, relaxed Lasso is indeed performing better
than Lars-OLS in general.

What is more striking than the dependence on the sparseness, however, is the dependence
on the signal-to-noise ratio. Consider the case where only 5 variables carry signal (q = 5).
For a high signal-to-noise ration (η = 0.8), relaxed Lasso and Lars-OLS hybrid perform
approximately equally well (and both much better than ordinary Lasso). For a low signal-
to-noise ratio (η = 0.2), however, relaxed Lasso is considerably better than Lars-OLS. The
reason for this is intuitively easy to understand. For noisy problems, it pays off to shrink
the coefficients of selected variables, while this is less important for less noisy data. Relaxed
Lasso adapts the amount of shrinkage to the noise level.

In general, it is not optimal to do no shrinkage at all for the selected variables (φ = 0)
or do full shrinkage (φ = 1). This is the reason why relaxed Lasso is performing better than
both ordinary Lasso and Lars-OLS hybrid for noisy problems, especially when just a few
variables carry signal. Given that the computational cost of relaxed Lasso is not higher than
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that for Lars-OLS hybrid (and sometimes equal to that of Lasso), relaxed Lasso seems to
be well suited for high dimensional problems as the sparseness and signal-to-noise ratio is in
general unknown and relaxed Lasso is adaptive to both.

5 Conclusions

We have proposed the relaxed Lasso as a generalization of Lasso estimation. The main moti-
vation are very high dimensional regression problems, where the Lasso has two shortcomings:

• Selection of Noise Variables: If the penalty parameter is chosen by cross-validation, the
number of selected variables is often very large. Many noise variables are potentially
selected.

• Low Accuracy of Predictions: The accuracy of prediction (in terms of squared error
loss) was shown to be negatively affected by the presence of many noise variables,
particularly for high signal-to-noise ratios.

The advantages of relaxed Lasso over ordinary Lasso in this high dimensional setting are
twofold.

• Sparser Estimates: The number of selected coefficients is in general very much smaller
for relaxed Lasso, without compromising on the accuracy of predictions. The models
produced by relaxed Lasso are thus more amenable to interpretation.

• More Accurate Predictions: If the signal-to-noise ration is very low, the predictive
accuracy of both Lasso and relaxed Lasso is comparable. For a high signal-to-noise
ratio, relaxed Lasso achieves often much more accurate predictions.

For high signal-to-noise ratios, both advantages of relaxed Lasso -sparser estimates and more
accurate predictions- can be achieved alternatively by using the Lars-OLS hybrid. However,
Lars-OLS hybrid is not adaptive to the signal-to-noise ratio, as seen in the numerical exam-
ples and is performing very much worse than ordinary Lasso for low signal-to-noise ratios.
Relaxed Lasso is adaptive to the signal-to-noise ratio and achieves near-optimal performance
on a wide variety of data sets.

6 Proofs

6.1 Proof of Theorem 2

It was assumed that the set of non-zero coefficients of β is given by M? = {1, . . . , q}. Denote
by E the event

∃λ : Mλ = M?. (12)
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Let c > 0 be any positive constant. Then

P (inf
λ,φ

L(λ, φ) > cn−1) ≤ P (inf
λ,φ

L(λ, φ) > cn−1|E)P (E) + P (Ec).

Let λ? be the smallest value of the penalty parameter λ such that no noise variable enters
the selected variables, that is β̂λ

k = 0 for all k > q,

λ? := min
λ≥0

{λ|β̂λ
k = 0,∀k > q}. (13)

The loss infλ,φ L(λ, φ) is smaller than L(λ?, 0). Note that, conditional on E , the loss L(λ?, 0)

is the loss of the regular OLS-estimator β̂?0 on the set M? = {1, . . . , q} of the q predictor
variables with non-vanishing coefficients. Let L? be the loss of this OLS-estimator. It follows
that

P (inf
λ,φ

L(λ, φ) > cn−1) ≤ P (L? > cn−1|E)P (E) + P (Ec) ≤ P (L? > cn−1) + P (Ec).

It follows from the proofs in Meinshausen and Bühlmann (2006) that there is a value of λ
such that the true model M? is selected with the Lasso estimator, so that P (Ec) → 0 for
n → ∞. By the known properties of the OLS-estimator, there exists some c > 0 for every
ε > 0, so that lim supn→∞ P (L? > cn−1) < ε, which completes the proof. �

6.2 Some Useful Lemmas

6.2.1 Eigenvalues.

Let Σ(M) be the covariance matrix, restricted to the subsetM⊆ {1, . . . , p} of variables. Let
Σn(M) be the corresponding empirical covariance matrix for n independent observations.

Lemma 1 Under Assumptions 1-3, there exist 0 < bmin < bmax < ∞, so that the maxi-
mal and minimal eigenvalues λmax(M) and λmin(M) of the empirical covariance matrices
Σn(M) are all bounded simultaneously for any d > 0 and all M with |M| = mn ≤ d log n
by bmin from below and bmax from above, with probability converging to 1 for n →∞,

P (bmin < λmin(M), λmax(M) < bmax, ∀M : |M| ≤ mn) → 1 n →∞.

Proof. By Gershgorins theorem, all eigenvalues of the empirical covariance matrix Σn(M)
are in the set

Γ(M) :=
⋃

a∈M

{x : |x− (Σn(M))aa| ≤
∑

b∈M\a

|(Σn(M))ab|}.

Let Γ := {1, . . . , p} be the set of all predictor variables. Taking the union over all sets with
|M| ≤ mn,⋃

M

Γ(M) ⊆
⋃

a∈{1,...,p}

{
x : |x− (Σn)aa| ≤ max

Ξ⊆{1,...,p},|Ξ|≤mn−1

∑
b∈Ξ

|(Σn)ab|
}
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Denoting the maximal difference between the covariance matrix and its empirical version by

∆ = max
a,b

|(Σn − Σ)ab|, (14)

it follows that ⋃
M

Γ(M) ⊆
⋃

a∈{1,...,p}

{
x : |x− Σaa| ≤ mn∆ +

∑
b6=a

|Σab|
}
.

Using the assumption that Σ is diagonally dominant at value ν < 1 and Σaa = 1, for all
a ∈ {1, . . . , p}, it follows that⋃

M

Γ(M) ⊆
⋃

a∈{1,...,p}

{
x : 1− ν −mn∆ < x ≤ 1 + ν + mn∆

}
.

As log pn ∼ cnξ with ξ < 1 and mn ≤ d log n for some d > 0, it is sufficient to show that
there exist g > 0 for every δ > 0 so that for n →∞,

P (∆ ≥ δ/mn) = O(p2
n exp(−gn/mn)). (15)

Using Bernstein’s inequality, there exists g > 0 so that for any 1 ≤ a, b ≤ pn and for n →∞,

P (|n−1

n∑
i=1

(Xa
i Xb

i )− E(XaXb)| > δ/mn) = O(exp(−gn/mn)).

With Bonferronis inequality, equation (15) follows, which completes the proof. �

6.2.2 Change in Gradient.

Let Vh be the set of all diagonal h×h matrices V , where the diagonal elements are in {−1, 1}.
Lemma 2 It holds under Assumptions 1-3 that, for every g > 0, with probability converging
to 1 for n →∞, simultaneously for all M with |M| ≤ mn = d log n and V ∈ V|M|,

|Σ(M)Σn(M)−1V 1M − V 1M| < g,

where the inequality is understood to be fulfilled if it is fulfilled componentwise.

Proof. First,

Σ(M)Σn(M)−1V 1M = V 1M + (Σ(M)− Σn(M))Σn(M)−1V 1M.

Thus, simultaneously for all M with |M| ≤ mn, it holds componentwise that∣∣Σ(M)Σn(M)−1V 1M − V 1M
∣∣ ≤ mn∆ max

M,a∈M
|(Σn(M)−1V 1M)a|,

where ∆ is defined as in (14). The last term maxM,a∈M |(Σn(M)−1V 1M)a| is bounded by
mn/λmin, where λmin is the minimal eigenvalue of Σn(M) over all subsetsM with |M| ≤ mn.
This minimal eigenvalue is bounded from below by bmin > 0 with probability converging
to 1 for n → ∞, according to Lemma 1. It remains to be shown that for any δ > 0,
P (∆ > δ/m2

n) → 1 for n →∞. This follows analogously to (15), which completes the proof.
�
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6.2.3 Restricted Positive Cone Condition.

The positive cone condition of Efron et al. (2004) is fulfilled if, for all subsetsM⊆ {1, . . . , pn}
and all V ∈ V|M|,

(V Σn(M)V )−11M > 0,

where the inequality holds componentwise. The restricted positive cone condition is fulfilled
if the inequality holds for all subsets M so that |M| ≤ mn.

Lemma 3 Under Assumptions 1-3, the restricted positive cone condition is fulfilled for mn ≤
d log n with any d > 0, with probability converging to 1 for n → ∞. Moreover, for any
0 < ε < 1− ν,

P ( min
M:|M|≤mn,V ∈V|M|

(V Σn(M)V )−11M > ε) → 1 n →∞.

Proof. First, for any M and V ∈ V|M|,

(V Σn(M)V )−11M = (V Σ(M)V )−1 (V Σ(M)Σn(M)−1V 1M).

By Lemma 2, the components of V Σ(M)Σn(M)−1V 1M are, for every δ > 0, simultaneously
bounded for all M with |M| ≤ mn and V ∈ V|M| by 1 − δ from below and by 1 + δ from
above, with probability converging to 1 for n → ∞. Thus it holds for every a ∈ M and
V ∈ V|M|, with probability converging to 1 for n →∞,

((V Σn(M)V )−11M)a ≥ Σ(M)−1
aa (1− δ)−

∑
b∈M\a

|Σ(M)−1
ab |(1 + δ)

= (1− δ)(Σ(M)−1
aa −

1 + δ

1− δ

∑
b∈M\a

|Σ(M)−1
ab |)

=: ga(δ)

The inverse covariance matrix Σ−1 is by assumption diagonally dominant at value ν < 1,
which is equivalent to ∑

b∈M\a

|Σ−1
ab | ≤ νΣ−1

aa .

It is straightforward to show that in this case, for all M⊆ {1, . . . , p}, the inverse covariance
matrices Σ(M)−1 are diagonally dominant at value ν < 1 as well. For δ = 0, the continuous
function ga(δ) is hence, for all components a ∈M, larger than or equal to (1−ν)(Σaa(M)−1).
Note that Σaa(M)−1 is the inverse of the conditional variance V ar(Xa|{Xb, b ∈ M \ a}),
which is smaller than the unconditional variance V ar(Xa). Hence, as Σaa = 1, it holds that
Σaa(M)−1 > 1 for all a ∈M and thus for all a ∈M,

lim
δ→0

ga(δ) ≥ 1− ν.

Choosing δ sufficiently small, the continuous function ga(δ) is for all components a ∈ M
larger than ε, as ε < 1− ν, which completes the proof. �
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Lemma 4 Under Assumptions 1-3, for some d > 0, it holds for any ε > 1 + ν that

P ( max
M:|M|≤mn,V ∈V|M|

(V Σn(M)V )−11M < ε) → 1 n →∞.

Proof. The proof of Lemma 4 follows analogously to the proof of Lemma 3. �

6.2.4 Monotonicity of Lasso-Solutions.

Lemma 5 Under the restricted positive cone condition, the absolute value of the Lasso esti-
mator β̂λ

k is for all components k = 1, . . . , p monotonously increasing for a decreasing value
of λ.

Proof. For any value of λ, let δλ > 0 be a small change of the penalty parameter λ. Let
δβ̂λ be the corresponding change of the Lasso estimator,

δβ̂λ := β̂λ−δλ − β̂λ.

It has to be shown that for any λ > 0,

β̂λ · δβ̂λ ≥ 0. (16)

For all components of β̂λ equal to zero, the claim is automatically fulfilled. Let the set of
non-zero components of β̂λ be again denoted by Mλ ⊆ {1, . . . , p}. Denote the restriction of
β̂λ and δβ̂λ to the set M by β̂λ(M) and δβ̂λ(M) respectively. It follows e.g. from Efron
et al. (2004) that the infinitesimal change δβ(M) of the vector β̂λ(M) is proportional to

(Σn(M)V )−11M, (17)

where V is a diagonal |M| × |M|-matrix with diagonal elements Vkk, k ∈ M, identical to
the signs of the correlations of Xk

i , i = 1, . . . , n with the residuals Yi −
∑

a∈{1,...,p} β̂λ
k Xa

i ,

i = 1, . . . , n. As β̂λ is a Lasso solution, Vkk is identical to the sign of β̂λ
k for all k ∈ M.

Therefore, componentwise, for all λ > 0

sign(δβ̂λ(M) · β̂λ(M)) = sign((V Σn(M)V )−11M).

If the restricted positive cone condition is fulfilled, all components on the r.h.s. are positive
and so the same is true for the l.h.s., and (16) follows. The restricted positive cone condition is
fulfilled with probability converging to 1 for n →∞ according to Lemma 3, which completes
the proof. �

6.2.5 When Do Noise Variables Enter?

By assumption, the correct model is given by the first q predictor variables, M? = {1, . . . , q}.
A noise variable is hence a variable with index larger than q. If any noise variable is part of
the Lasso estimator, then, equivalently, there exists some k > q so that k ∈Mλ.
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Lemma 6 Let λn, n ∈ N, be a sequence with λn = o(n(−1+ξ)/2) for n → ∞. Then, under
Assumptions 1-3 and independent predictor variables,

P (∃k > q : k ∈Mλn) → 1 n →∞.

Proof. Let β̂?λ be the Lasso estimator, which is constrained to be zero outside the set
M? = {1, . . . , q},

β̂?λ = arg min
β

n−1

n∑
i=1

(Yi −
∑

k∈M?

βkX
k
i )2 + λ‖β‖1. (18)

If β̂?λ is a valid Lasso solution to the unconstrained problem, as in equation (2), then there
does not exist, by uniqueness of the solution, any k > q so that k ∈Mλ. It suffices hence to
show that β̂?λn cannot be the solution to (2), with probability converging to 1 for n →∞.
Using results in Osborne et al. (2000), the Lasso estimator β̂?λ is only a valid Lasso solution
for the whole set of pn predictor, if the gradient n−1

∑n
i=1 RiX

k
i is smaller or equal to λ for

all k > q, where, for i = 1, . . . , n,

Ri = Yi −
∑

a∈M?

β̂?λ
k Xa

i ,

are the residuals under the estimator β̂?λ. Thus

P (∃k > q : k ∈Mλn) ≥ P (max
k>q

n−1

n∑
i=1

RiX
k
i > λn). (19)

Conditional on (Y,X1, . . . , Xq), it holds for every k > q, that

n−1

n∑
i=1

RiX
k
i ∼ N (0, n−2

n∑
i=1

R2
i ).

The expected value of n−1
∑n

i=1 R2
i , the averaged squared residuals, is larger than σ2(n−q)/n

for all values of λ and

P (n−1

n∑
i=1

R2
i > σ2/2) → 1 n →∞.

If n−1
∑n

i=1 R2
i = σ2/2, then n−1

∑n
i=1 RiX

k
i ∼ N (0, σ2/(2n)). Thus, for some c, d > 0,

P (n−1

n∑
i=1

RiX
k
i > λn) ≥ dλ−1

n exp(−cnλ2
n),

which holds for every k > q, of which there are pn − q variables. The probability that the
gradient n−1

∑n
i=1 RiX

k
i is smaller than λn for all pn− q noise variables is hence bounded by

P (max
k>q

n−1

n∑
i=1

RiX
k
i ≤ λn) ≤ (1− dλ−1

n exp(−cnλ2
n))pn−q

≤ exp(−(pn − q)dλ−1
n exp(−cnλ2

n)).
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Let λn be a sequence with λn = o(n(−1+ξ)/2) for n →∞. Then nλ2
n = o(nξ), and as log pn ∼

gnξ, for some g > 0, it follows that

P (max
k>q

n−1

n∑
i=1

RiX
k
i ≤ λn) → 0 n →∞,

which, using (19), completes the proof. �

6.2.6 Error of Estimators.

The following lemma bounds from below the difference between the estimator under λ ≥ λ?

and the true parameter value.

Lemma 7 Assume Σ = 1 and Assumptions 1 and 2. For any δ > 0, with probability
converging to 1 for n →∞, it holds for all k ≤ q that for λ ≥ λ?,

|β̂λ
k − βk| ≥ (1− δ)λ.

Proof. First,
|β̂λ

k − βk| ≥ |β̂λ
k − β̂?0

k | − |β̂?0
k − βk|,

where β̂?0 is defined as in (18) as the Lasso estimator where all components of noise variables,
for k > q, are restricted to be zero. This estimator is the regular OLS estimator on the
set M = {1, . . . , q} of variables and it follows by standard results that for any series cn

with c−1
n = op(n

−1/2), it holds that P (|β̂?0
k − βk| > cn) → 0 for n → ∞. By Lemma 6,

λ−1
? = op(n

−1/2). It suffices hence to show that, for any δ > 0, for all k ≤ q and λ ≥ λ?,

P (|β̂λ
k − β̂?0

k | > (1− δ)λ) → 1 n →∞. (20)

Note that for λ ≥ λ?, β̂λ = β̂?λ by definition of β̂?λ in (18). Using (17), it holds for every
λ > 0 that

|β̂?λ
k − β̂?0

k | = |
∫ λ

0

(V Σn(Mλ)V )−11Mλ
dλ′|,

where Mλ = {k ≤ q : β̂?λ
k 6= 0} ⊆ M?. By Lemma 3 and Σ = 1, it holds for every δ > 0

with probability converging to 1 for n →∞ that

min
M:|M|≤mn,V

(V Σn(M)V )−11M > (1− δ). (21)

As q = |M?| ≤ mn, it follows that with probability converging to 1 for n →∞,

|β̂?λ
k − β̂?0

k | ≥ (1− δ)λ,

which shows, using β̂λ = β̂?λ for λ ≥ λ?, that (20) holds true and thus completes the proof. �
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6.2.7 Errors Due to Finite Validation Set.

Let Lñ(λ, φ) be the empirical version of L(λ, φ) for ñ observations of (Y,X), which are
independent of the observations used to construct the relaxed Lasso estimator.

Lemma 8 Let lim infn→∞ ñ/n → 1/K with K ≥ 2. Then, under Assumptions 1-3,

sup
λ∈Λ,φ∈[0,1]

|L(λ, φ)− Lñ(λ, φ)| = Op(n
−1 log2 n) n →∞.

Proof. The restricted positive cone condition is satisfied with probability converging to 1
for n →∞, according to Lemma 3. It hence suffices to show the claim under assumption of
the restricted positive cone condition. Let, as before, M1, . . . ,Mm be the set of all models
attained with Lasso estimates and let λk, k = 1, . . . ,m, (with λ1 < . . . < λm) be the largest
value of the penalty parameter λ so that Mk = Mλ. Using Lemma 5 and the definition of
the relaxed Lasso estimates, equation (4), any relaxed Lasso solution is in one of the sets
B1, . . . ,Bm, where for all k ∈ {1, . . . ,m},

Bk = {β = φβ̂λk,0 + (1− φ)β̂λk,1|φ ∈ [0, 1]}. (22)

The estimates β̂λk,1 are the Lasso estimates for penalty parameter λk, and β̂λk,0 the cor-
responding OLS-estimates. The loss under a choice of λ, φ as penalty parameters is given
by

L(λ, φ) = E(Y −
∑

k∈{1,...,p}

β̂λ,φ
k Xk)2

For any λ, set δβ̂λ = (β̂λ,1 − β̂λ,0). The loss L(λ, φ) can then be written as

L(λ, φ) = E(U2
λ) + 2φE(UλVλ) + φ2E(V 2

λ ), (23)

where Uλ = Y −
∑

k∈{1,...,p} β̂λ,0
k Xk, and Vλ =

∑
k∈{1,...,p} δβ̂λ

k Xk. The loss L(λ, φ) is hence,
for a given λ, a quadratic function in φ. Both Uλ and Vλ are normal distributed random
variables conditional on the sample on which β̂λ,φ is estimated. There exists some h > 0
so that, for all λ and φ, P (maxk β̂λ,φ

k > h) → 0 for n → ∞. As the number of non-zero
coefficients is bounded by mn ≤ d log n, it thus follows by Bernstein’s inequality that there
exists some g > 0 for every ε > 0 so that,

lim sup
n→∞

P (|E(U2
λ)− Eñ(U2

λ)| > gñ−1 log n) < ε,

where Eñ(U2
λ) is the empirical mean of Uλ in the sample of ñ observations in the validation

set. For the second and third term in the loss (23) it follows analogously that there exists
g > 0 for every ε > 0 so that

lim sup
n→∞

P (|E(UλVλ)− Eñ(UλVλ)| > gñ−1 log n) < ε,

lim sup
n→∞

P (|E(V 2
λ )− Eñ(V 2

λ )| > gñ−1 log n) < ε.
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Hence, using (23), there exists some g > 0 for every ε > 0 so that

lim sup
n→∞

P ( sup
φ∈[0,1]

|L(λ, φ)− Lñ(λ, φ)| > gñ−1 log n) < ε.

When extending the supremum over φ ∈ Λ to a supremum over λ > 0, φ ∈ [0, 1], note that
it is sufficient, due to (22), to consider values of λ in the finite set {λ1, . . . , λm}. Using
Bonferroni’s inequality and m ≤ d log n, it follows that there exists some g > 0 for every
ε > 0 so that

lim sup
n→∞

P (sup
λ,φ

|L(λ, φ)− Lñ(λ, φ)| > gñ−1 log2 n) < ε,

which completes the proof as ñ/n → 1/K > 0 for n →∞. �

6.3 Proof of Theorem 1

For independent predictor variables, the loss L(λ) of the Lasso estimator under penalty
parameter λ is given by

L(λ) =
∑

k∈{1,...,p}

(β̂λ
k − βk)

2 =
∑
k≤q

(β̂λ
k − βk)

2 +
∑
k>q

(β̂λ
k )2, (24)

using that the variance of all components of X is identical to 1 and βk = 0 for all k > q.
Let λ? be defined as in (13). Using Lemma 7, it follows that for all ε > 0, with probability
converging to 1 for n →∞, for all k ≤ q and λ ≥ λ?,

(β̂λ
k − βk)

2 ≥ (1− ε)2(λ− λ?)
2.

Summing only over components with k ≤ q in (24), it follows that the loss is bounded from
below for λ ≥ λ? by

inf
λ≥λ?

L(λ) ≥ q(1− ε)2λ2
?. (25)

Now the case λ < λ? is examined. The range of λ is furthermore restricted to lie in the
area Λ, defined in (10). Denote in the following the difference between the Lasso estimators
β̂λ and β̂λ? by δλ = β̂λ − β̂λ? . Denote the difference between β̂λ? and the true parameter β
by θ = β̂λ? − β. Then

(β̂λ
k − βk)

2 = θ2
k − 2θkδ

λ
k + (δλ

k )2.

It follows by Lemma 7 that, with probability converging to 1 for n → ∞, for any ε > 0,
|θk| > (1 − ε)λ?. It holds by an analogous argument that |θk| < (1 + ε)λ?. Hence, for all
k ≤ q,

(β̂λ
k − βk)

2 ≥ (1− ε)2λ2
? − 2(1 + ε)λ?δ

λ
k + (δλ

k )2.

By Lemma 4 and analogously to Lemma 7, it holds furthermore with probability converging
to 1, that (1− ε)(λ0 − λ) ≤ |δλ

k | ≤ (1 + ε)(λ0 − λ) and hence, for all k ≤ q,

(β̂λ
k − βk)

2 ≥ (1− ε)2λ2
? − 2(1 + ε)2λ?(λ? − λ) + (1− ε)2(λ? − λ)2.
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As λ? is the largest value of λ such that Mλ = M?, a noise variable (with index k > q)
enters the model Mλ if λ < λ?. Using again Lemma 3, with probability converging to 1 for
n →∞, it holds for this component that for any ε > 0,

(β̂λ
k )2 ≥ (1− ε)2(λ? − λ)2. (26)

It follows that with probability converging to 1 for n →∞,

L(λ) ≥ q(1− ε)2λ2
? − 2q(1 + ε)2λ?(λ? − λ) + (q + (1− ε)2)(λ? − λ)2.

Denote the infimum over λ0 ≤ λ ≤ λ? of the r.h.s. by f(ε),

f(ε) := inf
λ0≤λ≤λ?

(
q(1− ε)2λ2

? − 2q(1 + ε)2λ?(λ? − λ) + (q + (1− ε)2)(λ? − λ)2
)
.

Note that f(ε) is a continuous function of ε and

lim
ε→1

f(ε) = q/(q + 1)λ2
?.

Hence, as ε can be chosen arbitrarily close to 1, it holds that, with probability converging to
1 for n →∞,

inf
λ0≤λ≤λ?

L(λ) ≥ inf
ε>0

f(ε) ≥ λ2
?/2.

By Lemma 6, λ−2
? = Op(n

1−ξ) and thus, using (25), for any r > 1− ξ,

P (inf
λ∈Λ

L(λ) > cn−r) → 1 n →∞,

which completes the proof. �

6.4 Proof of Theorem 3

It holds for the loss under λ̂ and φ̂ for every g > 0 that

P (L(λ̂, φ̂) > gn−1 log2 n) ≤ P ( inf
λ∈Λ,φ∈[0,1]

L(λ, φ) >
1

2
gn−1 log2 n) +

2P ( sup
λ∈Λ,φ∈[0,1]

|L(λ, φ)− Lcv(λ, φ)| > 1

2
gn−1 log2 n).

It follows by Theorem 2 that the first term on the r.h.s. vanishes for n → ∞. The second
term is by Bonferroni’s inequality bounded from above by

K max
1≤S≤K

P ( sup
λ∈Λ,φ∈[0,1]

|L(λ, φ)− LS,ñ(λ, φ)| > 1

2
gn−1 log2 n).

Using Lemma 8, there exists thus for every ε > 0 some g > 0 so that

lim sup
n→∞

P (L(λ̂, φ̂) > gn−1 log2 n) < ε,

which completes the proof. �
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Table 3: Average number of selected variables with the Lars-OLS
hybrid for ρ = 0

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 5 5 6 5 5 3 3 2 4 2
100 4 5 5 4 5 4 4 3 3 5
200 4 4 5 4 4 3 3 7 4 4

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 17 16 17 13 11 3 3 3 3 3
100 14 16 16 16 15 5 6 4 4 7
200 13 13 14 14 13 7 6 8 6 4

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 31 23 16 12 7 3 3 2 2 3
100 42 49 48 37 30 5 5 2 5 1
200 46 47 52 58 57 16 10 9 5 4

26



Table 4: The relative improvement of relaxed Lasso over ordinary
Lasso for ρ = 0 (upper half) and ρ = 0.3 (lower half)

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 41 55 49 49 52 -1 0 -2 -2 1
100 95 88 89 110 146 5 6 5 11 9
200 106 88 84 169 171 24 14 11 21 22

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 -5 -3 -2 -3 -2 -3 -3 -4 -4 -4
100 7 17 18 18 12 -3 0 -1 3 -1
200 28 32 43 58 60 -3 2 2 3 4

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 -3 -4 -3 -2 -3 -4 -3 -3 -4 -3
100 -3 -2 -4 -4 -3 -3 -1 -1 -1 -1
200 0 -1 3 1 -2 -4 -1 -1 -1 0

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 40 98 104 85 103 -2 2 0 -3 1
100 83 95 114 180 186 9 8 6 10 15
200 119 128 89 166 202 24 32 10 19 41

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 -3 3 5 -1 7 -3 -5 -3 -2 -2
100 14 31 36 33 49 0 -1 -3 1 0
200 50 48 72 77 114 -4 -1 5 7 3

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 -7 -2 -3 -2 -3 -4 -4 -2 -2 -4
100 -2 -1 0 -2 -3 -3 -1 -1 -3 -1
200 2 7 8 12 11 -2 -3 -1 -2 -1
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Table 5: The relative improvement of relaxed Lasso over Lars-OLS
hybrid for ρ = 0 (upper half) and ρ = 0.3 (lower half)

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 0 3 2 -3 -2 38 29 21 28 20
100 -4 6 1 1 5 18 46 34 19 23
200 8 1 -4 5 0 2 -4 55 5 9

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 8 5 2 2 3 28 21 20 9 9
100 6 3 0 0 0 32 42 31 26 29
200 3 -2 2 -2 0 22 20 48 23 22

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 18 8 7 7 6 20 14 9 3 4
100 6 11 6 6 6 35 33 16 20 8
200 3 6 3 2 2 41 46 52 31 30

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 -3 2 -1 3 -1 42 33 24 30 26
100 -6 -4 -7 -1 3 11 39 20 21 22
200 -3 -1 -2 2 2 1 -4 81 4 -6

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 0 0 -1 1 1 37 29 23 18 9
100 0 2 -2 1 1 29 39 39 33 32
200 -2 2 1 -1 -1 14 13 34 9 16

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 18 1 5 4 5 29 17 10 5 3
100 5 9 8 4 3 46 43 28 17 13
200 4 1 2 1 0 39 36 46 41 31
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Table 6: The average value of φ̂ for the relaxed Lasso, for ρ = 0

p 50 100 200 400 800 50 100 200 400 800

n q = 5 , η = 0.8 q = 5 , η = 0.2

50 .14 .09 .08 .04 .03 .66 .50 .49 .51 .46
100 .09 .11 .08 .03 .04 .52 .68 .53 .45 .51
200 .08 .08 .07 .06 .06 .29 .39 .71 .47 .41

n q = 15 , η = 0.8 q = 15 , η = 0.2

50 .24 .15 .13 .19 .20 .67 .50 .45 .47 .45
100 .21 .17 .05 .05 .04 .66 .72 .61 .61 .64
200 .17 .12 .10 .06 .02 .54 .63 .75 .70 .61

n q = 50 , η = 0.8 q = 50 , η = 0.2

50 .55 .38 .39 .45 .43 .65 .47 .45 .41 .33
100 .44 .54 .45 .41 .40 .72 .77 .71 .64 .58
200 .40 .44 .30 .29 .19 .77 .84 .89 .79 .75
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