
Recap

KKT (Karush-Kuhn-Tucker) conditions
necessary and sufficient conditions for a solution of the Lasso
objective function

Gj(β̂) = −sign(β̂j)λ if β̂j 6= 0

|Gj(β̂)| ≤ λ if β̂j = 0

where

G(β) = −2X T (Y − Xβ)/n

(sub-differential must contain the zero element)

sparsity is potentially induced at points of non-differentiability
(here the components of βj )



Coordinate descent algorithms

for optimization, exploiting the KKT conditions

path following algorithms:
compute {β̂j(λ)}pj=1 over all values of λ ∈ R+

the coefficient paths are typically “non-monotone” in the
non-zeros
it may happen that

β̂j(λ) 6= 0, β̂j(λ
′) = 0 for λ′ < λ



Generalized Linear Models (GLMs)

univariate response Y , covariate X ∈ X ⊆ Rp

GLM: Y1, . . . ,Yn independent

g(E[Yi |Xi = x ]) = µ+

p∑
j=1

βjx (j)

︸ ︷︷ ︸
=f (x)=fµ,β(x)

µ in the model: one cannot simply center the data
g(·) real-valued, known link function

Lasso: `1-norm regularized maximum likelihood estimation

µ̂, β̂ = argminµ,β( −`(µ, β)︸ ︷︷ ︸
neg. log-likelihood

+λ‖β‖1)



Group Lasso (Yuan and Lin, 2006)

groups G1, . . . ,Gq which build a partition of {1, . . . ,p}
write the (high-dimensional) parameter vector as

β = (βG1 , βG2 , . . . , βGq )
T

goal: an estimator which is “group-sparse”, i.e.:
for all j = 1, . . . ,p,

either β̂Gj ≡ 0

or (β̂Gj )r 6= 0 ∀r ∈ Gj



Group Lasso:

β̂(λ) = argminβ

‖Y − Xβ‖22/n + λ

q∑
j=1

mj‖βGj‖2


where typically mj =

√
|Gj |

group sparsity because objective function is non-differentiable
at ‖βGj‖2 = 0 ⇐⇒ βGj ≡ 0 (j = 1, . . . ,q)



objective function is non-differentiable at ‖βGj‖2
sub-differential:

∂

∂βGj

‖Y − Xβ‖22/n + λ

q∑
j=1

mj‖βGj‖2


= G(β)Gj + λmjE(βGj )

E(βGj = {e ∈ R|Gj |; e =
βGj

‖βGj‖2
if βGj 6= 0, ‖e‖2 ≤ 1 if βGj = 0}

KKT conditions: solution is characterized by

0 ∈ sub-differential



either β̂Gj ≡ 0︸ ︷︷ ︸
point of non-differentiability

or (β̂Gj )r 6= 0 ∀r ∈ Gj

why the second “or (β̂Gj )r 6= 0 ∀r ∈ Gj?” (when ‖β̂Gj‖2 6= 0)
;

0 = G(β̂)Gj + λmj
β̂Gj

‖β̂Gj‖2

suppose X T X/n = I (orthonormal design) and ∃r (β̂Gj )r = 0:

0 = (−2X T Y/n)Gj + 2β̂Gj + λmj
β̂Gj

‖β̂Gj‖2
r th component 0 = −2((X T Y/n)Gj )r + 0 + 0

but it will not happen that X T Y is zero (random noise in Y )



Sparse Group Lasso
(Simon, Friedman, Hastie & Tibshirani, 2013)

β̂(λ, α) = argminβ

‖Y − Xβ‖22/n + (1− α)λ
q∑

j=1

mj‖βGj‖2 + αλ‖β‖1


convex combination of Group Lasso and Lasso penalties
; may also lead to sparsity within groups for α > 0


