## Recap

KKT (Karush-Kuhn-Tucker) conditions necessary and sufficient conditions for a solution of the Lasso objective function

$$
\begin{aligned}
& G_{j}(\hat{\beta})=-\operatorname{sign}\left(\hat{\beta}_{j}\right) \lambda \text { if } \hat{\beta}_{j} \neq 0 \\
& \left|G_{j}(\hat{\beta})\right| \leq \lambda \text { if } \hat{\beta}_{j}=0
\end{aligned}
$$

where

$$
G(\beta)=-2 X^{T}(Y-X \beta) / n
$$

(sub-differential must contain the zero element)
sparsity is potentially induced at points of non-differentiability (here the components of $\beta_{j}$ )

## Coordinate descent algorithms

for optimization, exploiting the KKT conditions
path following algorithms: compute $\left\{\hat{\beta}_{j}(\lambda)\right\}_{j=1}^{p}$ over all values of $\lambda \in \mathbb{R}^{+}$
the coefficient paths are typically "non-monotone" in the non-zeros
it may happen that

$$
\hat{\beta}_{j}(\lambda) \neq 0, \hat{\beta}_{j}\left(\lambda^{\prime}\right)=0 \text { for } \lambda^{\prime}<\lambda
$$

## Generalized Linear Models (GLMs)

univariate response $Y$, covariate $X \in \mathcal{X} \subseteq \mathbb{R}^{p}$
GLM: $\quad Y_{1}, \ldots, Y_{n}$ independent

$$
g\left(\mathbb{E}\left[Y_{i} \mid X_{i}=x\right]\right)=\underbrace{\mu+\sum_{j=1}^{p} \beta_{j} x^{(j)}}_{=f(x)=f_{\mu, \beta}(x)}
$$

$\mu$ in the model: one cannot simply center the data $g(\cdot)$ real-valued, known link function

Lasso: $\ell_{1}$-norm regularized maximum likelihood estimation

$$
\hat{\mu}, \hat{\beta}=\operatorname{argmin}_{\mu, \beta}(\underbrace{\underbrace{-\ell(\mu-\text {-likelihood }}}_{\text {neg. }}+\lambda\|\beta\|_{1})
$$

## Group Lasso (Yuan and Lin, 2006)

groups $\mathcal{G}_{1}, \ldots, \mathcal{G}_{q}$ which build a partition of $\{1, \ldots, p\}$ write the (high-dimensional) parameter vector as

$$
\beta=\left(\beta_{\mathcal{G}_{1}}, \beta_{\mathcal{G}_{2}}, \ldots, \beta_{\mathcal{G}_{q}}\right)^{T}
$$

goal: an estimator which is "group-sparse", i.e.: for all $j=1, \ldots, p$,

$$
\begin{aligned}
& \text { either } \hat{\beta}_{\mathcal{G}_{j}} \equiv 0 \\
& \text { or }\left(\hat{\beta}_{\mathcal{G}_{j}}\right)_{r} \neq 0 \forall r \in \mathcal{G}_{j}
\end{aligned}
$$

Group Lasso:

$$
\hat{\beta}(\lambda)=\operatorname{argmin}_{\beta}\left(\|Y-X \beta\|_{2}^{2} / n+\lambda \sum_{j=1}^{q} m_{j}\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}\right)
$$

where typically $m_{j}=\sqrt{\left|\mathcal{G}_{j}\right|}$
group sparsity because objective function is non-differentiable at $\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}=0 \Longleftrightarrow \beta_{\mathcal{G}_{j}} \equiv 0(j=1, \ldots, q)$
objective function is non-differentiable at $\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}$ sub-differential:

$$
\begin{aligned}
& \frac{\partial}{\partial \beta_{\mathcal{G}_{j}}}\left(\|Y-X \beta\|_{2}^{2} / n+\lambda \sum_{j=1}^{q} m_{j}\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}\right) \\
= & G(\beta)_{\mathcal{G}_{j}}+\lambda m_{j} E\left(\beta_{\mathcal{G}_{j}}\right) \\
& E\left(\beta_{\mathcal{G}_{j}}=\left\{e \in \mathbb{R}^{\left|\mathcal{G}_{j}\right|} ; e=\frac{\beta_{\mathcal{G}_{j}}}{\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}} \text { if } \beta_{\mathcal{G}_{j}} \neq 0,\|e\|_{2} \leq 1 \text { if } \beta_{\mathcal{G}_{j}}=0\right\}\right.
\end{aligned}
$$

KKT conditions: solution is characterized by

$$
0 \in \text { sub-differential }
$$

either

$$
\underbrace{\hat{\beta}_{\mathcal{G}_{j}} \equiv 0}_{\text {point of non-differentiability }} \text { or }\left(\hat{\beta}_{\mathcal{G}_{j}}\right)_{r} \neq 0 \forall r \in \mathcal{G}_{j}
$$

why the second "or $\left(\hat{\beta}_{\mathcal{G}_{j}}\right)_{r} \neq 0 \forall r \in \mathcal{G}_{j}$ ?" (when $\left\|\hat{\beta}_{\mathcal{G}_{j}}\right\|_{2} \neq 0$ )

$$
0=G(\hat{\beta})_{\mathcal{G}_{j}}+\lambda m_{j} \frac{\hat{\beta}_{\mathcal{G}_{j}}}{\left\|\hat{\beta}_{\mathcal{G}_{j}}\right\|_{2}}
$$

suppose $X^{\top} X / n=I$ (orthonormal design) and $\exists r\left(\hat{\beta}_{\mathcal{G}_{j}}\right)_{r}=0$ :

$$
0=\left(-2 X^{T} Y / n\right)_{\mathcal{G}_{j}}+2 \hat{\beta}_{\mathcal{G}_{j}}+\lambda m_{j} \frac{\hat{\beta}_{\mathcal{G}_{j}}}{\left\|\hat{\beta}_{\mathcal{G}_{j}}\right\|_{2}}
$$

$r$ th component $\quad 0=-2\left(\left(X^{T} Y / n\right)_{\mathcal{G}_{j}}\right)_{r}+0+0$
but it will not happen that $X^{\top} Y$ is zero (random noise in $Y$ )

## Sparse Group Lasso

 (Simon, Friedman, Hastie \& Tibshirani, 2013)$$
\hat{\beta}(\lambda, \alpha)=\operatorname{argmin}_{\beta}\left(\|Y-X \beta\|_{2}^{2} / n+(1-\alpha) \lambda \sum_{j=1}^{q} m_{j}\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}+\alpha \lambda\|\beta\|_{1}\right)
$$

convex combination of Group Lasso and Lasso penalties $\leadsto$ may also lead to sparsity within groups for $\alpha>0$

