Recap

Oracle inequality for the Lasso

Theorem 6.1 in Bühlmann and van de Geer (2011) assume: compatibility condition holds with compatibility constant ϕ_0^2 ($\geq L > 0$) Then, on \mathcal{T} and for $\lambda \geq 2\lambda_0$:

$$\|X(\hat{\beta} - \beta^{0}\|_{2}^{2}/n + \lambda \|\hat{\beta} - \beta^{0}\|_{1} \leq 4\lambda^{2} s_{0}/\phi_{0}^{2}$$

recall:
$$\mathcal{T} = \{2 \max_{j=1,\dots,p} |\varepsilon^{T} X^{(j)}/n| \leq \lambda_{0}\}$$

$$\mathbb{P}[\mathcal{T}]$$
 large if $\lambda_0 \asymp \sqrt{\log(p)/n}$

implications:

$$\|X(\hat{\beta} - \beta^{0}\|_{2}^{2}/n = O_{P}(s_{0} \log(p)/n) \text{ (fast rate)} \\ \|\hat{\beta} - \beta^{0}\|_{1} = O_{P}(s_{o} \sqrt{\log(p)/n})$$

these are the (minimax) optimal rates:

no other method can do better

assume compatibility condition and (e.g.) Gaussian errors in addition, require beta-min condition:

$$\min_{i \in S_0} |\beta_j^0| \gg s_0 \sqrt{\log(p)/n}$$

$$\implies \mathbb{P}[\hat{S} \supseteq S_0] \to 1 \ (p \ge n \to \infty)$$

with high probab: Lasso selects a superset of the active set $S_0 \sim$ Lasso does not miss an important active variable!

in practice: $\lambda = \lambda_{CV} \rightsquigarrow$ leads "typically" to a too large model

LASSO: Least Absolute Shrinkage and Screening Operator

obtaining

$$\mathbb{P}[\hat{S} = S_0]
ightarrow 1 \ (p \ge n
ightarrow \infty)$$

necessarily requires restrictive condition on X, the so-called irrepresentability condition (= neighborhood stability condition)

Adaptive Lasso (Zou, 2006)

two-stage procedure:

- initial estimator $\hat{\beta}_{init}$, e.g., the Lasso
- ► re-weighted ℓ₁-penalty

$$\hat{\beta}_{\text{adapt}}(\lambda) = \operatorname{argmin}_{\beta} \left(\|Y - X\beta\|_{2}^{2}/n + \lambda \sum_{j=1}^{p} \frac{|\beta_{j}|}{|\hat{\beta}_{\text{init},j}|} \right)$$

at least as sparse (typically more sparse) than Lasso

 \rightsquigarrow good/"better" for very sparse underlying mechanisms/models