Stability Selection: Theorem 10.1 in book

Assume:

> exchangeability condition:
{I(j € S»),j € S§} is exchangeable for all A € A

» S is not worse than random guessing
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Then, for g € (1/2,1):
1 gz
E[V] < —— A
[ ] - 2T — 1 p
suppose we know gy (see later)
strategy: specify E[V] = v (e.g. =5)
2
~ for Ty = 5 + 27)—"%: E[V] < v



example: regression model with p = 1000 variables

S, = the top 10 variables from Lasso (e.g. the different X from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value A corresponds to the “top 10”; A is a singleton

we then know that gy = E[|S\(/)]] < 10
For E[V] = v := 5 we then obtain
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there is room to play around
recommendation: take |S,| rather large and stability selection
will reduce again to reasonable size

when taking the “top 307, the threshold becomes

1 2 30°
Tiw = 5+ 50 =05+

2" 2pvp 5+1000:5  0°°



adding noise...
can always add (e.g. independent A/ (0, 1)) noise covariates
enlarged dimension Penarged

error control becomes better (for the same threshold)
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this sometimes helps indeed in practice — at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing
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perhaps hard to check but very reasonabile...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition:
{1(j € S»),j € S5} is exchangeable for all A € A

a restrictive assumption
but the theorem is very general, for any algorithm S



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = XB° + ¢, Cov(X);j = p (i # J), Var(X;) = 1V]

distributions of (Y X(50) {X0); j e S¢}) and of
(Y, X(S) {X(0)); j e S§}) are the same for any permutation
m: 8§ — 5§

» distribution of X(50) {X(()); j € S¢} is the same for all 7
(because of equi- correlatlon)

» distribution of Y|X (%) {X(()); j e S¢} is the same for all 7
(because it depends only on X ()

> therefore: distribution of Y, X(50) {X(*)); j e S¢S} is the
same for all 7
and hence exchangeability condition holds for any
(measurable) function Sy



An illustration for graphical modeling
p = 160 gene expressions, n =115
GLasso estimator, selecting among the (g) = 12/720 features
stability selection with IE[V] < Vo =30

with permutation (empty graph is correct)

A=0065 A=0.063 A=0.061 A=0.059 A=0.057 A=0.055
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Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice



P-values based on multi sample splitting
(Ch. 11 in Bihimann and van de Geer (2011))

Stability Selection
» uses subsampling many times — a good thing!

» provides control of the expected number of false positives
rather than e.g. the familywise error rate ~» we will
“address” this with
multi sample splitting and aggregation of P-values

familywise error rate (FWER):

FWER = P[V > 0], V number of false positives



Fixed design linear model

Y =X3%+¢

instead of de-biased/de-sparsified method, consider the “older”
technique (which is not statistically optimal but more generic
and more in the spirit of stability selection)



split the sample into two parts /1 and L of equal size |n/2]

A

> use (e.g.) Lasso to select variables based on /1: S(/y)
> perform low-dimensional statistical inference on I based
on data (X,(S(“)), Ys);
2
for example using the t-test for single coefficients 5})
(if j ¢ S(Iy), assign the p-value 1 to the hypothesis
Hoj: B) =0)

due to independence of /1 and b, this is a “valid” strategy
(see later)



validity of the (single) data splitting procedure

consider testing Hp : ﬁ}’ = 0 versus Hp; : ﬂ}’ #0

assume Gaussian errors for the fixed design linear model :
thus, use the t-test on the second half of the sample I to get a
p-value

Praw; from t-test based on X,(ZS(")), Y,

Praw j is a valid p-value (controlling type | error) for testing Hp ;
if 3(11) 2 & (i.e., the screening property holds)

if the screening property does not hold: Praw ; is still valid for
Ho;(M) : Bj(M) = 0 where M = 5(1;) is a selected sub-model
and (M) = ((XM)TXM)=1(xM)Ty



a p-value lottery depending on the random split of the data

motif regression n = 287, p = 195
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~» should aggregate/average over multiple splits!



Multiple testing and aggregation of p-values

the issue of multiple testing:

P - Prawj based on Y, X5 if j e %(/1),
1 itj ¢ S(h)
thus, we can have at most |S(/;)| false positives

~ can correct with Bonferroni with factor |S(/;)| (instead of
factor p) to control the familywise error rate

Preorej = min(P; - |5(1),1) (G =1,...,p)

decision rule: reject Hy; if and only if P,y < a
~ FWER < o



the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

pli! ple)

corr,j’ """ " corr,f
how to aggregate these dependent p-values to a single one?

for v € (0, 1) define

Qy(7) = min { @, (PR} /7 b=1,....B}), 1},

where g, (-) is the (empirical) v-quantile function



Proposition 11.1 (Buhlmann and van de Geer, 2011)
For any v € (0,1), Q;(v) are P-values which control the FWER

example: v =1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing ~:

P; = min (1 — Iog’ymin) inf Q)1 (G=1,...,p).
| A —

YE(Ymin,1)
price to optimize over ~

Theorem 11.1 (Bidhlmann and van de Geer (2011))
For any ymin € (0, 1), P; are P-values which control the FWER

the entire framework for p-value aggregation holds whenever
the single p-values are valid (P[P ; < a] < o under Hy )

has nothing to do with high-dimensional regression and sample
splitting
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
> is very generic, also for “any other” model class

> is powerful in terms of multiple testing correction: we only
correct for multiplicity from |S(/;)| variables

> it relies in theory on the screening property of the selector
in practice: it is a quite competitive method!

» Schultheiss et al. (2021): can improve multi sample
splitting by multi carve methods, based on “technology”
from selective inference



Undirected graphical models
(Ch. 13 in Bihlmann and van de Geer (2011))

» graph G:
set of vertices/nodes V = {1,...,p}
setofedges EC V x V

» random variables X = X(1), ..., X(P) with distribution P
identify nodes in V with components of X

graphical model: (G, P)

pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

(G, K) ¢ E — XU) 1| x| X(\GAD



Global Markov property

(stronger property than pairwise Markov prop):
consider disjoint subsets A,B,C C V
P satisfies the global Markov property (w.r.t. G) if

Aand B are separated by C — X 1 x(8)| X©)

only condition on subset C




global Markov property = pairwise Markov property
Proof:
consider (j,k) ¢ E

denote by A = {J}v B= {k}v C= V\ {]a k}s
since (j,k) ¢ E, A= {j} and B = {k} are separated by C

by the global Markov property: XU) L X(9)| x(V\U:A})

~» global Markov property is more “interesting”



consider graphical model (G, P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:

the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j, k) ¢ E = XU 1 x| x(V\UK})

how about reverse relation ?

?
(k) € E == X0 y xk)| x(\UA})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(k) e E = XU y x| x(\UAD

prime example: P is Gaussian
(k)€ E = X0 g x®|x\UkD
for A and B not separated by C: in general not true that
XAy xB)x(©)

.. due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

(x) : COR— e,

X® o xM 4 @)
@ eM @ B iid N(0,1)

~» a Gaussian distribution P
for B + ay = 0: Corr(Xq, X3) = 0 thatis: X() 1 x©)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

we know that X() 1. X (for special constellations of «, 3, )

take A={1},B={3},C =1
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X y X (conditional on @, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G, P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):

a conditional independence graph with P being Gaussian
for simplicity, assume mean zero: P ~ N,(0,X)

we know already that edges are equivalent to conditional
dependence given all other variables

for a GGM:

(k) € E<= () #0



Neighborhood selection: nodewise regression

X0 =gDx® 1 37 VX0 10 =1, p
r#j,k

Xk — 5/(“ X043 58U x(0) 4 (k)
r#K.j

for GGM:

U.K) e Ee= B #0 <5 20



