Stability Selection: Theorem 10.1 in book

Assume:

- exchangeability condition:

$$
\left\{1\left(j \in \hat{S}_{\lambda}\right), j \in \hat{S}_{0}^{c}\right\} \text { is exchangeable for all } \lambda \in \Lambda
$$

- \hat{S} is not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{C}\right|}
$$

Then, for $\pi_{\text {thr }} \in(1 / 2,1)$:

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p}
$$

suppose we know q_{Λ} (see later) strategy: specify $\mathbb{E}[V]=v_{0} \quad($ e.g. $=5)$
\sim for $\pi_{\text {thr }}:=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}: \mathbb{E}[V] \leq v_{0}$
example: regression model with $p=1000$ variables
$\hat{S}_{\lambda}=$ the top 10 variables from Lasso (e.g. the different λ from Lasso by CV and choose the top 10 variables with the largest absolute values of the corresponding estimated coefficients; if less than 10 variables are selected, take the selected variables) the value λ corresponds to the "top 10 "; Λ is a singleton
we then know that $q_{\Lambda}=\mathbb{E}\left[\left|\hat{S}_{\lambda}(I)\right|\right] \leq 10$
For $\mathbb{E}[V]=v_{0}:=5$ we then obtain

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{10^{2}}{2 * 1000 * 5}=0.51
$$

there is room to play around recommendation: take $\left|\hat{S}_{\lambda}\right|$ rather large and stability selection will reduce again to reasonable size
when taking the "top 30", the threshold becomes

$$
\pi_{\mathrm{thr}}=\frac{1}{2}+\frac{q_{\Lambda}^{2}}{2 p v_{0}}=0.5+\frac{30^{2}}{2 * 1000 * 5}=0.59
$$

adding noise...
can always add (e.g. independent $\mathcal{N}(0,1))$ noise covariates enlarged dimension $p_{\text {enlarged }}$
error control becomes better (for the same threshold)

$$
\mathbb{E}[V] \leq \frac{1}{2 \pi_{\mathrm{thr}}-1} \frac{q_{\Lambda}^{2}}{p_{\text {enlarged }}}
$$

this sometimes helps indeed in practice - at the cost of loss in power

The assumptions for mathematical guarantees

not worse than random guessing

$$
\frac{\left.\mathbb{E}\left|S_{0} \cap \hat{S}_{\Lambda}\right|\right)}{\mathbb{E}\left(\left|S_{0}^{c} \cap \hat{S}_{\Lambda}\right|\right)} \geq \frac{\left|S_{0}\right|}{\left|S_{0}^{c}\right|}
$$

perhaps hard to check but very reasonable...
for Lasso in linear models it holds assuming the variable screening property asymptotically: if beta-min and compatibility condition hold
exchangeability condition:
$\left\{1\left(j \in \hat{S}_{\lambda}\right), j \in S_{0}^{c}\right\}$ is exchangeable for all $\lambda \in \Lambda$
a restrictive assumption
but the theorem is very general, for any algorithm \hat{S}
a very special case where exchangeability condition holds: random equi-correlation design linear model

$$
Y=X \beta^{0}+\varepsilon, \operatorname{Cov}(X)_{i, j} \equiv \rho(i \neq j), \operatorname{Var}\left(X_{j}\right) \equiv 1 \forall j
$$

distributions of ($\left.Y, X^{\left(S_{0}\right)},\left\{X^{(j)} ; j \in S_{0}^{c}\right\}\right)$ and of
$\left(Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}\right)$ are the same for any permutation
$\pi: S_{0}^{C} \rightarrow S_{0}^{C}$

- distribution of $X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because of equi-correlation)
- distribution of $Y \mid X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π (because it depends only on $\left.X^{\left(S_{0}\right)}\right)$
- therefore: distribution of $Y, X^{\left(S_{0}\right)},\left\{X^{(\pi(j))} ; j \in S_{0}^{c}\right\}$ is the same for all π and hence exchangeability condition holds for any (measurable) function \hat{S}_{λ}

An illustration for graphical modeling
$p=160$ gene expressions, $n=115$
GLasso estimator, selecting among the $\binom{p}{2}=12^{\prime} 720$ features stability selection with $\mathbb{E}[V] \leq v_{0}=30$

with permutation (empty graph is correct)

Stability Selection is extremely easy to use and super-generic
the sufficient assumptions (far from necessary) for mathematical guarantees are restrictive but the method seems to work very well in practice

P-values based on multi sample splitting

(Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection

- uses subsampling many times - a good thing!
- provides control of the expected number of false positives rather than e.g. the familywise error rate \leadsto we will "address" this with
multi sample splitting and aggregation of P -values
familywise error rate (FWER):
FWER $=\mathbb{P}[V>0], V$ number of false positives

Fixed design linear model

$$
Y=X \beta^{0}+\varepsilon
$$

instead of de-biased/de-sparsified method, consider the "older" technique (which is not statistically optimal but more generic and more in the spirit of stability selection)
split the sample into two parts I_{1} and I_{2} of equal size $\lfloor n / 2\rfloor$

- use (e.g.) Lasso to select variables based on $I_{1}: \hat{S}\left(I_{1}\right)$
- perform low-dimensional statistical inference on I_{2} based on data $\left(X_{l_{2}}^{\left(\hat{S}\left(I_{1}\right)\right)}, Y_{l_{2}}\right)$; for example using the t-test for single coefficients β_{j}^{0} (if $j \notin \hat{S}\left(I_{1}\right)$, assign the p -value 1 to the hypothesis $\left.H_{0, j}: \beta_{j}^{0}=0\right)$
due to independence of I_{1} and I_{2}, this is a "valid" strategy (see later)
validity of the (single) data splitting procedure consider testing $H_{0, j}: \beta_{j}^{0}=0$ versus $H_{A, j}: \beta_{j}^{0} \neq 0$ assume Gaussian errors for the fixed design linear model : thus, use the t-test on the second half of the sample I_{2} to get a p-value

$$
P_{\text {raw }, j} \text { from } t \text {-test based on } X_{l_{2}}^{\left(\hat{S}\left(I_{1}\right)\right)}, Y_{l_{2}}
$$

$P_{\text {raw }, j}$ is a valid p -value (controlling type I error) for testing $H_{0, j}$ if $\hat{S}\left(I_{1}\right) \supseteq S_{0}$ (i.e., the screening property holds)
if the screening property does not hold: Praw,j is still valid for $H_{0, j}(M): \beta_{j}(M)=0$ where $M=\hat{S}\left(I_{1}\right)$ is a selected sub-model and $\beta(M)=\left(\left(X^{(M)}\right)^{T} X^{(M)}\right)^{-1}\left(X^{(M)}\right)^{T} Y$
a p-value lottery depending on the random split of the data motif regression $n=287, p=195$

\leadsto should aggregate/average over multiple splits!

Multiple testing and aggregation of p-values

the issue of multiple testing:

$$
\tilde{P}_{j}= \begin{cases}P_{\text {raw }, j} \text { based on } Y_{l_{2}}, X_{l_{2}}^{\left(\hat{S}\left(l_{1}\right)\right)} & , \text { if } j \in \hat{S}\left(l_{1}\right), \\ 1 & , \text { if } j \notin \hat{S}\left(l_{1}\right)\end{cases}
$$

thus, we can have at most $\left|\hat{S}\left(I_{1}\right)\right|$ false positives
\leadsto can correct with Bonferroni with factor $\left|\hat{S}\left(I_{1}\right)\right|$ (instead of factor p) to control the familywise error rate

$$
\tilde{P}_{\text {corr }, j}=\min \left(\tilde{P}_{j} \cdot\left|\hat{S}\left(I_{1}\right)\right|, 1\right)(j=1, \ldots, p)
$$

decision rule: reject $H_{0, j}$ if and only if $\tilde{P}_{\text {corr, } j} \leq \alpha$ \leadsto FWER $\leq \alpha$
the issue with P -value aggregation:
if we run sample splitting B times, we obtain P -values

$$
\tilde{P}_{\mathrm{corr}, j}^{[1]}, \ldots, \tilde{P}_{\mathrm{corr}, j}^{[B]}
$$

how to aggregate these dependent p-values to a single one?
for $\gamma \in(0,1)$ define

$$
Q_{j}(\gamma)=\min \left\{q_{\gamma}\left(\left\{\tilde{P}_{\mathrm{corr}, j}^{[b]} / \gamma ; b=1, \ldots, B\right\}\right), 1\right\}
$$

where $q_{\gamma}(\cdot)$ is the (empirical) γ-quantile function

Proposition 11.1 (Bühlmann and van de Geer, 2011)
For any $\gamma \in(0,1), Q_{j}(\gamma)$ are P-values which control the FWER
example: $\gamma=1 / 2$
aggregate the p -values with the sample median and multiply by the factor 2
avoid choosing γ :
$P_{j}=\min \{\underbrace{\left(1-\log \gamma_{\text {min }}\right)}_{\text {price to optimize over } \gamma} \inf _{\gamma \in\left(\gamma_{\text {min }}, 1\right)} Q_{j}(\gamma), 1\}(j=1, \ldots, p)$.

Theorem 11.1 (Bühlmann and van de Geer (2011))
For any $\gamma_{\min } \in(0,1), P_{j}$ are P-values which control the FWER
the entire framework for p-value aggregation holds whenever the single p -values are valid $\left(\mathbb{P}\left[P_{\text {raw }, j} \leq \alpha\right] \leq \alpha\right.$ under $\left.H_{0, j}\right)$ has nothing to do with high-dimensional regression and sample splitting

$$
n=100, p=100
$$

$n=100, p=1000$

one can also adapt the method to control the False Discovery Rate (FDR)
multi sample splitting and p-value construction:

- is very generic, also for "any other" model class
- is powerful in terms of multiple testing correction: we only correct for multiplicity from $\left|\hat{S}\left(I_{1}\right)\right|$ variables
- it relies in theory on the screening property of the selector in practice: it is a quite competitive method!
- Schultheiss et al. (2021): can improve multi sample splitting by multi carve methods, based on "technology" from selective inference

Undirected graphical models

(Ch. 13 in Bühlmann and van de Geer (2011))

- graph G :
set of vertices/nodes $V=\{1, \ldots, p\}$ set of edges $E \subseteq V \times V$
- random variables $X=X^{(1)}, \ldots, X^{(p)}$ with distribution P identify nodes in V with components of X
graphical model: (G, P)
pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

$$
(j, k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

Global Markov property
(stronger property than pairwise Markov prop):
consider disjoint subsets $A, B, C \subseteq V$
P satisfies the global Markov property (w.r.t. G) if
A and B are separated by $C \Longrightarrow X^{(A)} \perp X^{(B)} \mid \underbrace{X^{(C)}}_{\text {only condition on subset } C}$

global Markov property \Longrightarrow pairwise Markov property
Proof:
consider $(j, k) \notin E$
denote by $A=\{j\}, B=\{k\}, C=V \backslash\{j, k\}$; since $(j, k) \notin E, A=\{j\}$ and $B=\{k\}$ are separated by C by the global Markov property: $X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}$
\leadsto global Markov property is more "interesting"
consider graphical model (G, P)
if P has a positive and continuous density w.r.t. Lebesgue measure:
the global and pairwise Markov properties (w.r.t. G) coincide/are equivalent (Lauritzen, 1996)
prime example: P is Gaussian
the Markov properties imply some conditional independencies from graphical separation
for example with pairwise Markov property:

$$
(j, k) \notin E \Longrightarrow X^{(j)} \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

how about reverse relation?

$$
(j, k) \in E \stackrel{?}{\Longrightarrow} X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

can we interpret existing edges?
in general: no! (unfortunately)
in some special cases:

$$
(j, k) \in E \quad \Longrightarrow \quad X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

prime example: P is Gaussian

$$
(j, k) \in E \Longleftrightarrow X^{(j)} \not \perp X^{(k)} \mid X^{(V \backslash\{j, k\})}
$$

for A and B not separated by C : in general not true that

$$
X^{(A)} \not \perp X^{(B)} \mid X^{(C)}
$$

... due to possible strange cancellations of "edge weights"

Gaussian "counterexample"

$$
\begin{aligned}
& X^{(1)} \leftarrow \varepsilon^{(1)} \\
& X^{(2)} \leftarrow \alpha X^{(1)}+\varepsilon^{(2)}, \\
& X^{(3)} \leftarrow \beta X^{(1)}+\gamma X^{(2)}+\varepsilon^{(3)}, \\
& \varepsilon^{(1)}, \varepsilon^{(2)}, \varepsilon^{(3)} \text { i.i.d. } \mathcal{N}(0,1)
\end{aligned}
$$

\leadsto a Gaussian distribution P
for $\beta+\alpha \gamma=0: \operatorname{Corr}\left(X_{1}, X_{3}\right)=0$ that is: $X^{(1)} \perp X^{(3)}$
it is a Gaussian Graphical Model where P is Markov w.r.t. the following graph

we know that $X^{(1)} \perp X^{(3)}$ (for special constellations of α, β, γ)
take $A=\{1\}, B=\{3\}, C=\emptyset$
although A and B are not separated (by the emptyset)
since there is a direct edge
it does not hold that $X^{(1)} \not \perp X^{(3)}$ (conditional on \emptyset, i.e., marginal)

Gaussian Graphical Model

conditional independence graph (CIG):
(G, P) satisfies the pairwise Markov property
Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian for simplicity, assume mean zero: $P \sim \mathcal{N}_{p}(0, \Sigma)$
we know already that edges are equivalent to conditional dependence given all other variables
for a GGM:

$$
(j, k) \in E \Longleftrightarrow\left(\Sigma^{-1}\right)_{j k} \neq 0
$$

Neighborhood selection: nodewise regression

$$
\begin{aligned}
& X^{(j)}=\beta_{k}^{(j)} X^{(k)}+\sum_{r \neq j, k} \beta_{r}^{(j)} X^{(r)}+\varepsilon^{(j)}, j=1 \ldots, p \\
& X^{(k)}=\beta_{j}^{(k)} X^{(j)}+\sum_{r \neq k, j} \beta_{r}^{(k)} X^{(r)}+\varepsilon^{(k)}
\end{aligned}
$$

for GGM:

$$
(j, k) \in E \Longleftrightarrow \beta_{k}^{(j)} \neq 0 \Longleftrightarrow \beta_{j}^{(k)} \neq 0
$$

