
Stability Selection: Theorem 10.1 in book

Assume:
I exchangeability condition:
{l(j ∈ Ŝλ), j ∈ Sc

0} is exchangeable for all λ ∈ Λ

I Ŝ is not worse than random guessing

E|S0 ∩ ŜΛ|)
E(|Sc

0 ∩ ŜΛ|)
≥ |S0|
|Sc

0 |
.

Then, for πthr ∈ (1/2,1):

E[V ] ≤ 1
2πthr − 1

q2
Λ

p
.

suppose we know qΛ (see later)
strategy: specify E[V ] = v0 (e.g. = 5)

; for πthr := 1
2 +

q2
Λ

2pv0
: E[V ] ≤ v0



example: regression model with p = 1000 variables

Ŝλ = the top 10 variables from Lasso (e.g. the different λ from
Lasso by CV and choose the top 10 variables with the largest
absolute values of the corresponding estimated coefficients; if
less than 10 variables are selected, take the selected variables)
the value λ corresponds to the “top 10”; Λ is a singleton

we then know that qΛ = E[|Ŝλ(I)|] ≤ 10

For E[V ] = v0 := 5 we then obtain

πthr =
1
2

+
q2

Λ

2pv0
= 0.5 +

102

2 ∗ 1000 ∗ 5
= 0.51



there is room to play around
recommendation: take |Ŝλ| rather large and stability selection
will reduce again to reasonable size

when taking the “top 30”, the threshold becomes

πthr =
1
2

+
q2

Λ

2pv0
= 0.5 +

302

2 ∗ 1000 ∗ 5
= 0.59



adding noise...
can always add (e.g. independent N (0,1)) noise covariates
enlarged dimension penlarged

error control becomes better (for the same threshold)

E[V ] ≤ 1
2πthr − 1

q2
Λ

penlarged

this sometimes helps indeed in practice – at the cost of loss in
power



The assumptions for mathematical guarantees

not worse than random guessing

E|S0 ∩ ŜΛ|)
E(|Sc

0 ∩ ŜΛ|)
≥ |S0|
|Sc

0 |

perhaps hard to check but very reasonable...

for Lasso in linear models it holds assuming the variable
screening property
asymptotically: if beta-min and compatibility condition hold



exchangeability condition:
{l(j ∈ Ŝλ), j ∈ Sc

0} is exchangeable for all λ ∈ Λ

a restrictive assumption
but the theorem is very general, for any algorithm Ŝ



a very special case where exchangeability condition holds:
random equi-correlation design linear model

Y = Xβ0 + ε, Cov(X )i,j ≡ ρ (i 6= j), Var(Xj) ≡ 1∀j

distributions of (Y ,X (S0), {X (j); j ∈ Sc
0}) and of

(Y ,X (S0), {X (π(j)); j ∈ Sc
0}) are the same for any permutation

π : Sc
0 → Sc

0

I distribution of X (S0), {X (π(j)); j ∈ Sc
0} is the same for all π

(because of equi-correlation)
I distribution of Y |X (S0), {X (π(j)); j ∈ Sc

0} is the same for all π
(because it depends only on X (S0))

I therefore: distribution of Y ,X (S0), {X (π(j)); j ∈ Sc
0} is the

same for all π
and hence exchangeability condition holds for any
(measurable) function Ŝλ



An illustration for graphical modeling
p = 160 gene expressions, n = 115
GLasso estimator, selecting among the

(p
2

)
= 12′720 features

stability selection with E[V ] ≤ v0 = 30
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Stability Selection is extremely easy to use
and super-generic

the sufficient assumptions (far from necessary) for
mathematical guarantees are restrictive
but the method seems to work very well in practice



P-values based on multi sample splitting
(Ch. 11 in Bühlmann and van de Geer (2011))

Stability Selection
I uses subsampling many times – a good thing!
I provides control of the expected number of false positives

rather than e.g. the familywise error rate ; we will
“address” this with
multi sample splitting and aggregation of P-values

familywise error rate (FWER):

FWER = P[V > 0], V number of false positives



Fixed design linear model

Y = Xβ0 + ε

instead of de-biased/de-sparsified method, consider the “older”
technique (which is not statistically optimal but more generic
and more in the spirit of stability selection)



split the sample into two parts I1 and I2 of equal size bn/2c
I use (e.g.) Lasso to select variables based on I1: Ŝ(I1)

I perform low-dimensional statistical inference on I2 based

on data (X (Ŝ(I1))
I2

,YI2);
for example using the t-test for single coefficients β0

j

(if j /∈ Ŝ(I1), assign the p-value 1 to the hypothesis
H0,j : β0

j = 0)

due to independence of I1 and I2, this is a “valid” strategy
(see later)



validity of the (single) data splitting procedure
consider testing H0,j : β0

j = 0 versus HA,j : β0
j 6= 0

assume Gaussian errors for the fixed design linear model :
thus, use the t-test on the second half of the sample I2 to get a
p-value

Praw,j from t-test based on X (Ŝ(I1))
I2

,YI2

Praw,j is a valid p-value (controlling type I error) for testing H0,j

if Ŝ(I1) ⊇ S0 (i.e., the screening property holds)

if the screening property does not hold: Praw,j is still valid for
H0,j(M) : βj(M) = 0 where M = Ŝ(I1) is a selected sub-model
and β(M) = ((X (M))T X (M))−1(X (M))T Y



a p-value lottery depending on the random split of the data

motif regression n = 287, p = 195

ADJUSTED P−VALUE
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40
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80

; should aggregate/average over multiple splits!



Multiple testing and aggregation of p-values

the issue of multiple testing:

P̃j =

{
Praw,j based on YI2 ,X

(Ŝ(I1))
I2

, if j ∈ Ŝ(I1),

1 , if j /∈ Ŝ(I1)

thus, we can have at most |Ŝ(I1)| false positives
; can correct with Bonferroni with factor |Ŝ(I1)| (instead of
factor p) to control the familywise error rate

P̃corr,j = min(P̃j · |Ŝ(I1)|,1) (j = 1, . . . ,p)

decision rule: reject H0,j if and only if P̃corr,j ≤ α
; FWER ≤ α



the issue with P-value aggregation:

if we run sample splitting B times, we obtain P-values

P̃ [1]
corr,j , . . . , P̃

[B]
corr,j

how to aggregate these dependent p-values to a single one?

for γ ∈ (0,1) define

Qj(γ) = min
{

qγ
(
{P̃ [b]

corr,j/γ; b = 1, . . . ,B}
)
,1
}
,

where qγ(·) is the (empirical) γ-quantile function



Proposition 11.1 (Bühlmann and van de Geer, 2011)
For any γ ∈ (0,1), Qj(γ) are P-values which control the FWER

example: γ = 1/2
aggregate the p-values with the sample median and multiply by
the factor 2



avoid choosing γ:

Pj = min


(
1− log γmin

)︸ ︷︷ ︸
price to optimize over γ

inf
γ∈(γmin,1)

Qj(γ),1

 (j = 1, . . . ,p).

Theorem 11.1 (Bühlmann and van de Geer (2011))
For any γmin ∈ (0,1), Pj are P-values which control the FWER

the entire framework for p-value aggregation holds whenever
the single p-values are valid (P[Praw,j ≤ α] ≤ α under H0,j )
has nothing to do with high-dimensional regression and sample
splitting



n = 100,p = 100
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one can also adapt the method to control the False Discovery
Rate (FDR)



multi sample splitting and p-value construction:
I is very generic, also for “any other” model class
I is powerful in terms of multiple testing correction: we only

correct for multiplicity from |Ŝ(I1)| variables
I it relies in theory on the screening property of the selector

in practice: it is a quite competitive method!
I Schultheiss et al. (2021): can improve multi sample

splitting by multi carve methods, based on “technology”
from selective inference



Undirected graphical models
(Ch. 13 in Bühlmann and van de Geer (2011))

I graph G:
set of vertices/nodes V = {1, . . . ,p}
set of edges E ⊆ V × V

I random variables X = X (1), . . . ,X (p) with distribution P
identify nodes in V with components of X

graphical model: (G,P)

pairwise Markov property:
P satisfies the pairwise Markov property (w.r.t. G) if

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})



Global Markov property
(stronger property than pairwise Markov prop):

consider disjoint subsets A,B,C ⊆ V
P satisfies the global Markov property (w.r.t. G) if

A and B are separated by C =⇒ X (A) ⊥ X (B)| X (C)︸︷︷︸
only condition on subset C



global Markov property =⇒ pairwise Markov property

Proof:
consider (j , k) /∈ E

denote by A = {j},B = {k},C = V \ {j , k};
since (j , k) /∈ E , A = {j} and B = {k} are separated by C

by the global Markov property: X (j) ⊥ X (k)|X (V\{j,k})

2

; global Markov property is more “interesting”



consider graphical model (G,P)

if P has a positive and continuous density w.r.t. Lebesgue
measure:
the global and pairwise Markov properties (w.r.t. G)
coincide/are equivalent (Lauritzen, 1996)

prime example: P is Gaussian



the Markov properties imply some conditional independencies
from graphical separation

for example with pairwise Markov property:

(j , k) /∈ E =⇒ X (j) ⊥ X (k)|X (V\{j,k})

how about reverse relation ?

(j , k) ∈ E
?︷︸︸︷

=⇒ X (j) 6⊥ X (k)|X (V\{j,k})

can we interpret existing edges?

in general: no! (unfortunately)



in some special cases:

(j , k) ∈ E =⇒ X (j) 6⊥ X (k)|X (V\{j,k})

prime example: P is Gaussian

(j , k) ∈ E ⇐⇒ X (j) 6⊥ X (k)|X (V\{j,k})

for A and B not separated by C: in general not true that

X (A) 6⊥ X (B)|X (C)

... due to possible strange cancellations of “edge weights”



Gaussian “counterexample”

X1 X2

X3

α

β γ

X (1) ← ε(1),

X (2) ← αX (1) + ε(2),

X (3) ← βX (1) + γX (2) + ε(3),

ε(1), ε(2), ε(3) i.i.d. N (0,1)

; a Gaussian distribution P
for β + αγ = 0: Corr(X1,X3) = 0 that is: X (1) ⊥ X (3)



it is a Gaussian Graphical Model where P is Markov w.r.t. the
following graph

X1 X2

X3

we know that X (1) ⊥ X (3) (for special constellations of α, β, γ)

take A = {1},B = {3},C = ∅
although A and B are not separated (by the emptyset)

since there is a direct edge
it does not hold that X (1) 6⊥ X (3) (conditional on ∅, i.e., marginal)



Gaussian Graphical Model

conditional independence graph (CIG):
(G,P) satisfies the pairwise Markov property

Gaussian Graphical Model (GGM):
a conditional independence graph with P being Gaussian

for simplicity, assume mean zero: P ∼ Np(0,Σ)

we know already that edges are equivalent to conditional
dependence given all other variables

for a GGM:

(j , k) ∈ E ⇐⇒ (Σ−1)jk 6= 0



Neighborhood selection: nodewise regression

X (j) = β
(j)
k X (k) +

∑
r 6=j,k

β
(j)
r X (r) + ε(j), j = 1 . . . ,p

X (k) = β
(k)
j X (j) +

∑
r 6=k ,j

β
(k)
r X (r) + ε(k)

for GGM:

(j , k) ∈ E ⇐⇒ β
(j)
k 6= 0 ⇐⇒ β

(k)
j 6= 0


