SpS penalty of group Lasso type

for easier computation: instead of

SpS penalty =
$$\lambda_1 \sum_j ||f_j||_n + \lambda_2 \sum_j I(f_j)$$

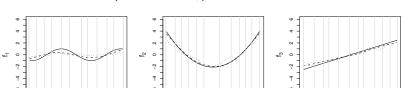
one can also use as an alternative:

SpS Group Lasso penalty
$$=\lambda_1\sum_j\sqrt{\|f_j\|_n^2+\lambda_2^2}I^2(f_j)$$

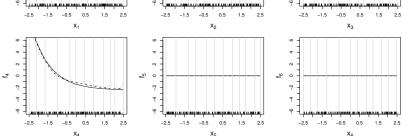
in parameterized form, the latter becomes:

$$\lambda_1 \sum_{j=1}^{p} \sqrt{\|H_j\beta_j\|_2^2/n + \lambda_2^2\beta_j^T W_j\beta_j} = \lambda_1 \sum_{j=1}^{p} \sqrt{\beta_j^T (H_j^T H_j/n + \lambda_2^2 W_j)\beta_j}$$

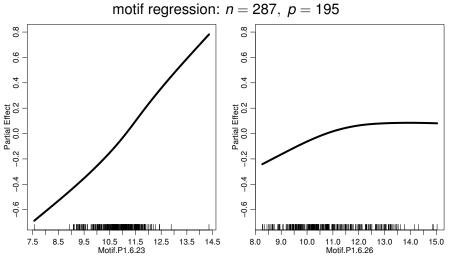
 \rightsquigarrow for every λ_2 : a generalized Group Lasso penalty



simulated example: n = 150, p = 200 and 4 active variables



 $\begin{array}{ll} \mbox{dotted line: } \lambda_2 = 0 \\ \sim \lambda_2 \mbox{ seems not so important: just consider a few candidate values} \\ \mbox{ (solid and dashed line)} \end{array}$



 \rightsquigarrow a linear model would be "fine as well"

Theoretical properties of high-dimensional additive models

- prediction and function estimation: compatibility-type assumption for the functions f⁰_i
- screening property:
 beta-min analogue assumption for non-zero functions f⁰_j
 chapters 5.6 and 8.4 in Rühlmann and van de Coer (2011)

see Chapters 5.6 and 8.4 in Bühlmann and van de Geer (2011)

Conclusions

if the problem is sparse and smooth: only a few $X^{(j)}$'s influence Y (only a few non-zero f_j^0) and the non-zero f_j^0 are smooth \sim one can often afford to model and fit additive functions in high dimensions

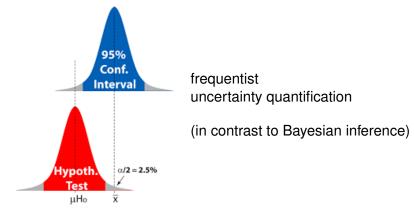
reason:

- dimensionality is of order $\dim = O(pn)$ $\log(\dim)/n = O((\log(p) + \log(n))/n)$ which is still small
- sparsity and smoothness then lead to: if each f_j⁰ is twice continuously differentiable

$$\|\hat{f} - f^0\|_2^2/n = O_P(\underbrace{\text{sparsity}}_{\text{no. of non-zero } f_j^0} \sqrt{\log(p)} n^{-4/5})$$

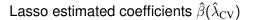
(cf. Ch. 8.4 in Bühlmann & van de Geer (2011))

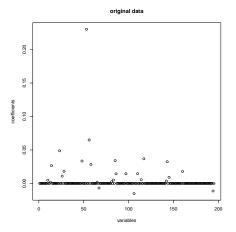
Uncertainty quantification: p-values and confidence intervals (slides, denoted as Ch. 10)



classical concepts but in very high-dimensional settings

Toy example: Motif regression (p = 195, n = 143)





p-values/quantifying uncertainty would be very useful!

$$Y = X\beta^0 + \varepsilon \ (p \gg n)$$

classical goal: statistical hypothesis testing

$$H_{0,j} : \beta_j^0 = 0 \text{ versus } H_{A,j} : \beta_j^0 \neq 0$$

or
$$H_{0,G} : \beta_j^0 = 0 \forall j \in \underbrace{G}_{\subseteq \{1,\dots,p\}} \text{ versus } H_{A,G} : \exists j \in G \text{ with } \beta_j^0 \neq 0$$

background: if we could handle the asymptotic distribution of the Lasso $\hat{\beta}(\lambda)$ under the null-hypothesis

→ could construct p-values

this is very difficult! asymptotic distribution of $\hat{\beta}$ has some point mass at zero,... Knight and Fu (2000) for $p < \infty$ and $n \to \infty$ because of "non-regularity" of sparse estimators "point mass at zero" phenomenon \rightsquigarrow "super-efficiency"

(Hodges, 1951)

 \rightsquigarrow standard bootstrapping and subsampling should not be used

 \rightsquigarrow de-sparsify/de-bias the Lasso instead

The de-sparsified or de-biased Lasso

Recap: if p < n and rank(X) = p, then:

$$\hat{\beta}_{\text{OLS},j} = Y^{\mathsf{T}} Z^{(j)} / (X^{(j)})^{\mathsf{T}} Z^{(j)} (\underbrace{=}_{Z^{(j)} = X^{(j)} - \hat{X}^{(j)}} Y^{\mathsf{T}} Z^{(j)} / \|Z^{(j)}\|_{2}^{2})$$

$$Z^{(j)} = X^{(j)} - X^{(-j)} \hat{\gamma}^{(j)}$$

$$= \text{OLS residuals from } X^{(j)} \text{ vs. } X^{(-j)} = \{X^{(k)}; \ k \neq j\}$$

$$\hat{\gamma}^{(j)} = \operatorname{argmin}_{\gamma} \|X^{(j)} - X^{(-j)} \gamma\|_{2}^{2}$$

that is: partial regression of Y onto residuals Z_i

idea for high-dimensional setting: use the Lasso for the residuals $Z^{(j)}$

The de-sparsified Lasso

consider

$$Z^{(j)} = X^{(j)} - X^{(-j)} \hat{\gamma}^{(j)}$$

= Lasso residuals from $X^{(j)}$ vs. $X^{(-j)} = \{X^{(k)}; k \neq j\}$
 $\hat{\gamma}^{(j)} = \operatorname{argmin}_{\gamma} \|X^{(j)} - X^{(-j)}\gamma\|_{2}^{2} + \lambda_{j} \|\gamma\|_{1}$

build projection of Y onto $Z^{(j)}$:

$$\frac{Y^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}} \underset{Y=X\beta^{0}+\varepsilon}{\overset{=}{\underset{k\neq j}{\overset{\beta^{0}}{=}}}} \beta^{0}_{j} + \underbrace{\sum_{\substack{k\neq j}} \frac{(X^{(k)})^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}} \beta^{0}_{k}}_{\text{bias}} + \frac{\varepsilon^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}}$$

estimate bias and subtract it:

$$\widehat{\text{bias}} = \sum_{k \neq j} \frac{(X^{(k)})^T X^{(j)}}{(X^{(j)})^T Z^{(j)}} \underbrace{\hat{\beta}_k}_{\text{standard Lasso}}$$

 \sim de-sparsified Lasso estimator

$$\hat{b}_{j} = \frac{Y^{T} Z^{(j)}}{(X^{(j)})^{T} Z^{(j)}} - \sum_{k \neq j} \frac{(X^{(k)})^{T} Z^{(j)}}{(X^{(j)})^{T} Z^{(j)}} \hat{\beta}_{k} \ (j = 1, \dots, p)$$

not sparse! Never equal to zero for all $j = 1, \ldots, p$

can also be represented as (Exercise!)

$$\hat{b}_{j} = \underbrace{\hat{\beta}_{j}}_{\text{standard Lasso}} + \frac{(Y - X\hat{\beta})^{T} Z^{(j)}}{(X^{(j)})^{T} Z^{(j)}}$$

name: "de-biased Lasso"

using that

$$\frac{Y^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}} = \beta_{j}^{0} + \sum_{k \neq j} \frac{(X^{(k)})^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}} \beta_{k}^{0} + \frac{\varepsilon^{T}Z^{(j)}}{(X^{(j)})^{T}Z^{(j)}}$$

we obtain

$$\sqrt{n}(\hat{b}_{j} - \beta_{j}^{0}) = \underbrace{\sqrt{n} \sum_{k \neq j} \frac{(X^{(k)})^{T} Z^{(j)}}{(X^{(j)})^{T} Z^{(j)}} (\beta_{k}^{0} - \hat{\beta}_{k})}_{\sqrt{n} \cdot \text{ (bias term of de-biased Lasso)}} + \underbrace{\sqrt{n} \frac{\varepsilon^{T} Z^{(j)}}{(X^{(j)})^{T} Z^{(j)}}}_{\text{fluctuation term}}$$

so far, this holds for any $Z^{(j)}$

assume fixed design X, e.g. condition on X Gaussian error $\varepsilon \sim N_n(0, \sigma^2 I)$

fluctuation term:

$$\sqrt{n} \frac{\varepsilon^T Z^{(j)}}{(X^{(j)})^T Z^{(j)}} = \frac{n^{-1/2} \varepsilon^T Z^{(j)}}{(X^{(j)})^T Z^{(j)}/n} \sim \mathcal{N}(0, \frac{\sigma^2 \|Z^{(j)}\|_2^2/n}{|(X^{(j)})^T Z^{(j)}/n|^2})$$

bias term of de-biased Lasso: we exploit two things

$$||\hat{\beta} - \beta^0||_1 = O_P(s_0\sqrt{\log(p)/n})$$

• KKT condition for Lasso (on $X^{(j)}$ versus $X^{(-j)}$): $|(X^{(k)})^T Z^{(j)}/n| \leq \lambda_j/2 \ \forall k \neq j$

therefore:

$$\sqrt{n} \sum_{k \neq j} \frac{(X^{(k)})^T Z^{(j)}}{(X^{(j)})^T Z^{(j)}} (\beta_k^0 - \hat{\beta}_k)$$

$$= \sqrt{n} \sum_{k \neq j} \frac{(X^{(k)})^T Z^{(j)} / n}{(X^{(j)})^T Z^{(j)} / n} (\beta_k^0 - \hat{\beta}_k)$$

$$= \sqrt{n} \sum_{k \neq j} \frac{(X^{(j)})^T Z^{(j)} / n}{(X^{(k)})^T Z^{(j)} / n} (\beta_k - \beta_k)$$

$$\leq \sqrt{n} \max_{\substack{k \neq j}} |\frac{(X^{(j)})^T Z^{(j)} / n}{(X^{(j)})^T Z^{(j)} / n} |\|\hat{\beta} - \beta^0\|_1$$

$$\leq \sqrt{n} \frac{\lambda_j/2}{(X^{(j)})^T Z^{(j)}/n} O_P(s_0 \sqrt{\log(p)/n})$$

$$= O_P(s_0 \log(p)/\sqrt{n}) = o_P(1) \text{ if } s_0 \ll \frac{\sqrt{n}}{\log(p)}$$

if
$$\lambda_j \asymp \sqrt{\log(p)/n}$$
 and $(X^{(j)})^T Z^{(j)}/n \asymp O(1)$

summarizing \sim *Theorem 10.1 in the notes* assume:

•
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$$

• $\lambda_j = C_j \sqrt{\log(p)/n}$ and $||Z^{(j)}||_2^2/n \ge L > 0$
• $s_0 = o(\sqrt{n}/\log(p))$ (a bit sparser than "usual")
• $||\hat{\beta} - \beta^0||_1 = O_P(s_0 \sqrt{\log(p)/n})$
(i.e., compatibility constant ϕ_o^2 bounded away from zero)
Then:

$$\sigma^{-1}\sqrt{n}\frac{(\boldsymbol{X}^{(j)})^{T}\boldsymbol{Z}^{(j)}/n}{\|\boldsymbol{Z}^{(j)}\|_{2}/\sqrt{n}}(\hat{b}_{j}-\beta_{j}^{0})\Longrightarrow\mathcal{N}(0,1) \ (j=1,\ldots,p)$$

more precisely:

$$\sigma^{-1} \sqrt{n} \frac{(X^{(j)})^T Z^{(j)}/n}{\|Z^{(j)}\|_2/\sqrt{n}} (\hat{b}_j - \beta_j^0) = W_j + \Delta_j$$

$$(W_1, \dots, W_p)^T \sim \mathcal{N}_p(0, \sigma^2 \Omega), \max_{j=1,\dots,p} |\Delta_j| = o_P(1)$$

confidence intervals for β_i^0 :

$$\hat{b}_{j} \pm \hat{\sigma} n^{-1/2} \frac{\|Z^{(j)}\|_{2}/\sqrt{n}}{|(X^{(j)})^{T}Z^{(j)}/n} \Phi^{-1}(1-\alpha/2)$$

 $\hat{\sigma}^2 = \|Y - X\hat{\beta}\|_2^2/n \text{ or } \hat{\sigma}^2 = \|Y - X\hat{\beta}\|_2^2/(n - \|\hat{\beta}\|_0^0)$ all is very easy! can also test

$$H_{0,j}:\ eta_j^{0}=0$$
 versus $H_{A,j}:\ eta_j^{0}
eq 0$

can also test group hypothesis: for $G \subseteq \{1, \ldots, p\}$

$$egin{aligned} &\mathcal{H}_{0,G}:\ eta_j^0\equiv 0 \forall j\in G\ &\mathcal{H}_{A,G}:\exists j\in G ext{ such that }eta_j^0
eq 0 \end{aligned}$$

under $H_{0,G}$:

$$\max_{j \in G} \sigma^{-1} \sqrt{n} \frac{|(X^{(j)})^T Z^{(j)}/n|}{\|Z^{(j)}\|_2/\sqrt{n}} |\hat{b}_j| = \max_{j \in G} |W_j + \Delta_j| \asymp \underbrace{\max_{j \in G} |W_j|}_{\text{distr. simulated}}$$

and plug-in $\hat{\sigma}$ for σ

Choice of tuning parameters

as usual: $\hat{\beta} = \hat{\beta}(\hat{\lambda}_{CV})$; what is the role of λ_j ?

variance =
$$\sigma^2 n^{-1} \frac{\|Z^{(j)}\|_2^2/n}{|(X^{(j)})^T Z^{(j)}/n|^2} \simeq \sigma^2 / \|Z^{(j)}\|_2^2$$

if $\lambda_j \searrow$ then $\|Z^{(j)}\|_2^2 \searrow$, i.e. large variance

error due to bias estimation is bounded by:

$$|\ldots| \leq \sqrt{n} \frac{\lambda_j/2}{|(X^{(j)})^T Z^{(j)}/n|} \|\hat{\beta} - \beta^0\|_1 \propto \lambda_j$$

assuming λ_j is not too small if $\lambda_j \searrow$ (but not too small) then bias estimation error \searrow

 \rightsquigarrow inflate the variance a bit to have low error due to bias estimation: control type I error at the price of slightly decreasing power

How good is the de-biased Lasso?

asymptotic efficiency:

for the de-biased Lasso to "work" we require

- ► sparsity: $s_0 = o(\sqrt{n}/\log(p))$ this cannot be beaten in a minimax sense
- compatibility condition for X

for optimality in terms of the lowest possible asymptotic variance achieving the "Cramer-Rao" lower bound:

require in addition that X^(j) versus X^(−j) is sparse: s_j ≪ n/log(p)

then... skipping details, the de-biased Lasso achieves (see Theorem 10.2):

$$\sqrt{n}(\hat{b}_j - \beta_j^0) \Longrightarrow \mathcal{N}(0, \underbrace{\sigma^2 \Theta_{jj}}_{\text{Cramer-Rao lower bound}})$$

 $\Theta = \Sigma_X^{-1} = \operatorname{Cov}(X)^{-1} \rightsquigarrow$ as for OLS in low dimensions!

Empirical results



black: confidence interval covered the true coefficient red: confidence interval failed to cover