Theoretical guarantees for Group Lasso

follows "similarly" but with more complicated arguments than for the Lasso

Algorithm for Group Lasso

consider the KKT conditions for the objective function

$$
Q_{\lambda}(\beta)=\underbrace{n^{-1} \sum_{i=1}^{n} \rho_{\beta}\left(X_{i}, Y_{i}\right)}_{\text {e.g. }\|Y-X \beta\|_{2}^{2} / n}+\lambda \sum_{j=1}^{q} m_{j}\left\|\beta_{\mathcal{G}_{j}}\right\|_{2}
$$

Lemma (Lemma 4.3 in Bühlmann and van de Geer (2011)) Assume $\rho_{\beta}=n^{-1} \sum_{i=1}^{n} \rho_{\beta}\left(X_{i}, Y_{i}\right)$ is differentiable and convex (in β). Then, a necessary and sufficient condition for $\hat{\beta}$ to be a solution is

$$
\begin{aligned}
\nabla \rho(\hat{\beta})_{\mathcal{G}_{j}}=-\lambda m_{j} \frac{\hat{\beta}_{\mathcal{G}_{j}}}{\left\|\hat{\beta}_{\mathcal{G}_{j}}\right\|_{2}} & \text { if } \hat{\beta}_{\mathcal{G}_{j}} \equiv 0, \\
\left\|\nabla \rho(\hat{\beta})_{\mathcal{G}_{j}}\right\|_{2} \leq \lambda m_{j} & \text { if } \hat{\beta}_{\mathcal{G}_{j}} \equiv 0
\end{aligned}
$$

block coordinate descent

```
Algorithm 1 Block Coordinate Descent Algorithm
    Let \(\beta^{[0]} \in \mathbb{R}^{p}\) be an initial parameter vector. Set \(m=\)
        0.
    2: repeat
    3: \(\quad\) Increase \(m\) by one: \(m \leftarrow m+1\).
        Denote by \(\mathscr{S}^{[m]}\) the index cycling through the
        block coordinates \(\{1, \ldots, q\}\) :
        \(\mathscr{S}^{[m]}=\mathscr{S}^{[m-1]}+1 \bmod q\). Abbreviate by \(j=\mathscr{S}^{[m]}\)
        the value of \(\mathscr{S}^{[m]}\).
    4: \(\quad\) if \(\|\left(-\nabla \rho\left(\beta_{-\mathscr{G}_{j}}^{[m-1]}\right) \mathscr{\mathscr { G }}_{j} \|_{2} \leq \lambda m_{j}: \operatorname{set} \beta_{\mathscr{G}_{j}}^{[m]}=0\right.\),
        otherwise: \(\beta_{\mathscr{G}_{j}}^{[m]}=\underset{\beta_{\mathscr{G}_{j}}}{\arg \min } Q_{\lambda}\left(\beta_{+\mathscr{G}_{j}}^{[m-1]}\right)\),
        where \(\beta_{-\mathscr{C}_{j}}^{[m-1]}\) is defined in (4.14) and \(\beta_{+\mathscr{C}_{j}}^{[m-1]}\) is the
        parameter vector which equals \(\beta^{[m-1]}\) except for
        the components corresponding to group \(\mathscr{G}_{j}\) whose
        entries are equal to \(\beta_{\mathscr{G}_{j}}\) (i.e. the argument we min-
        imize over).
    5: until numerical convergence
```


The generalized Group Lasso penalty

Chapter 4.5 in Bühlmann and van de Geer (2011)

$$
\operatorname{pen}(\beta)=\lambda \sum_{j=1}^{q} m_{j} \sqrt{\beta_{\mathcal{G}_{j}}^{T} A_{j} \beta_{\mathcal{G}_{j}}},
$$

A_{j} positive definite
can do the computation with standard group Lasso by transformation:

$$
\begin{aligned}
& \tilde{\beta}_{\mathcal{G}_{j}}=A_{j}^{1 / 2} \beta_{\mathcal{G}_{j}} \leadsto \operatorname{pen}(\tilde{\beta})=\lambda \sum_{j=1}^{q} m_{j}\left\|\tilde{\mathcal{G}}_{\mathcal{G}_{j}}\right\|_{2} \\
& X \beta=\sum_{j=1}^{q} \tilde{X}_{\mathcal{G}_{j}} \tilde{\mathcal{G}}_{\mathcal{G}_{j}}=: \tilde{X} \tilde{\beta}, \tilde{X}_{\mathcal{G}_{j}}=X_{\mathcal{G}_{j}} A_{j}^{-1 / 2}
\end{aligned}
$$

can simply solve the "tilde" problem: $\leadsto \hat{\tilde{\beta}} \leadsto \hat{\beta}_{\mathcal{G}_{j}}=A_{j}^{-1 / 2} \hat{\tilde{\beta}}_{\mathcal{G}_{j}}$
special but important case: groupwise prediction penalty

$$
\operatorname{pen}(\beta)=\lambda \sum_{j=1}^{q} m_{j}\left\|X_{\mathcal{G}_{j}} \beta_{\mathcal{G}_{j}}\right\|_{2}=\lambda \sum_{j=1}^{q} m_{j} \sqrt{\beta_{\mathcal{G}_{j}}^{T} X_{\mathcal{G}_{j}}^{T} X_{\mathcal{G}_{j}} \beta_{\mathcal{G}_{j}}}
$$

$X_{\mathcal{G}_{j}}^{\top} X_{\mathcal{G}_{j}}$ typically positive definite for $\left|\mathcal{G}_{j}\right|<n$

- penalty is invariant under arbitrary reparameterizations within every group \mathcal{G}_{j} : important!
- when using an orthogonal parameterization such that $X_{\mathcal{G}_{j}}^{\top} X_{\mathcal{G}_{j}}=I$: it is the standard Group Lasso with categorical variables: this is in fact what one has in mind (can use groupwise orthogonalized design) or one should use the groupwise prediction penalty

is with groupwise orthogonalized design matrices

High-dimensional additive models

the special case with natural cubic splines

(Ch. 5.3.2 in Bühlmann and van de Geer (2011)) consider the estimation problem wit the SSP penalty:
$\hat{f}_{1}, \ldots, \hat{f}_{p}=\operatorname{argmin}_{f_{1}, \ldots, f_{p} \in \mathcal{F}}\left(\left\|Y-\sum_{j=1}^{p} f_{j}\right\|_{n}^{2}+\lambda_{1}\left\|f_{j}\right\|_{n}+\lambda_{2} l\left(f_{j}\right)\right)$
where $\mathcal{F}=$ Sobolev space of functions on $[a, b]$ that are continuously differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011) Let $a, b \in \mathbb{R}$ such that $a<\min _{i, j}\left(X_{i}^{(j)}\right)$ and $b>\max _{i, j}\left(X_{i}^{(j)}\right)$. Let \mathcal{F} be as above. Then, the \hat{f}_{j} 's are natural cubic splines with knots at $X_{i}^{(j)}, i=1, \ldots, n$.
implication: the optimization over functions is exactly representable as a parametric problem with $\operatorname{dim} \approx 3 n p$ (namely cubic splines)
the optimization over functions is exactly representable as a parametric problem (with ciubic splines)
therefore:
$f_{j}=H_{j} \beta_{j}, H_{j}$ from natural cubic spline basis

$$
\begin{aligned}
& \left\|f_{j}\right\|_{n}=\left\|H_{j} \beta_{j}\right\|_{2} / \sqrt{n}=\sqrt{\beta_{j}^{T} H_{j}^{T} H_{j} \beta_{j} / \sqrt{n}} \\
& I\left(f_{j}\right)=\sqrt{\int\left(\left(H_{j} \beta_{j}\right)^{\prime \prime}\right)^{2}}=\sqrt{\beta_{j}^{T} \underbrace{\left(H_{j}^{\prime \prime}\right)^{T} H_{j}^{\prime \prime}}_{=: W_{j}} \beta}=\sqrt{\beta_{j}^{T} W_{j} \beta_{j}}
\end{aligned}
$$

\leadsto convex problem
$\hat{\beta}=\operatorname{argmin}_{\beta}\left(\|Y-H \beta\|_{2}^{2} / n+\lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T} H_{j}^{T} H_{j} \beta_{j} / n}+\lambda_{2} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T} W_{j} \beta_{j}}\right)$

SSP penalty of group Lasso type

for easier computation: instead of

$$
\text { SSP penalty }=\lambda_{1} \sum_{j}\left\|f_{j}\right\|_{n}+\lambda_{2} \sum_{j} I\left(f_{j}\right)
$$

one can also use as an alternative:

$$
\text { SSP Group Lasso penalty }=\lambda_{1} \sum_{j} \sqrt{\left\|f_{j}\right\|_{n}^{2}+\lambda_{2} I^{2}\left(f_{j}\right)}
$$

in parameterized form, the latter becomes:
$\lambda_{1} \sum_{j=1}^{p} \sqrt{\left\|H_{j} \beta_{j}\right\|_{2}^{2} / n+\lambda_{2}^{2} \beta_{j}^{\top} W_{j} \beta_{j}}=\lambda_{1} \sum_{j=1}^{p} \sqrt{\beta_{j}^{T}\left(H_{j}^{\top} H_{j} / n+\lambda_{2}^{2} W_{j}\right) \beta_{j}}$
\leadsto for every λ_{2} : a generalized Group Lasso penalty
simulated example: $n=150, p=200$ and 4 active variables

$\leadsto \lambda_{2}$ seems not so important: just consider a few candidate values (solid and dashed line)
motif regression: $n=287, p=195$

$~$ a linear model would be "fine as well"

Theoretical properties of high-dimensional additive models

- prediction and function estimation: compatibility-type assumption for the functions f_{j}^{0}
- screening property: beta-min analogue assumption for non-zero functions f_{j}^{0}
see Chapters 5.6 and 8.4 in Bühlmann and van de Geer (2011)

Conclusions

if the problem is sparse and smooth:
only a few $X^{(j)}$'s influence Y (only a few non-zero f_{j}^{0}) and the non-zero f_{j}^{0} are smooth
\leadsto one can often afford to model and fit additive functions in high dimensions
reason:

- dimensionality is of order $\operatorname{dim}=O(p n)$ $\log (\operatorname{dim}) / n=O((\log (p)+\log (n)) / n)$ which is still small
- sparsity and smoothness then lead to: if each f_{j}^{0} is twice continuously differentiable

$$
\left\|\hat{f}-f^{0}\right\|_{2}^{2} / n=O_{P}(\underbrace{\text { sparsity }}_{\text {no. of non-zero } f_{j}^{0}} \sqrt{\log (p)} n^{-4 / 5})
$$

(cf. Ch. 8.4 in Bühlmann \& van de Geer (2011))

