
Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments than for
the Lasso



Algorithm for Group Lasso

consider the KKT conditions for the objective function

Qλ(β) = n−1
n∑

i=1

ρβ(Xi ,Yi)︸ ︷︷ ︸
e.g. ‖Y−Xβ‖2

2/n

+λ

q∑
j=1

mj‖βGj‖2

Lemma (Lemma 4.3 in Bühlmann and van de Geer (2011))
Assume ρβ = n−1∑n

i=1 ρβ(Xi ,Yi) is differentiable and convex
(in β). Then, a necessary and sufficient condition for β̂ to be a
solution is

∇ρ(β̂)Gj = −λmj
β̂Gj

‖β̂Gj‖2
if β̂Gj 6≡ 0,

‖∇ρ(β̂)Gj‖2 ≤ λmj if β̂Gj ≡ 0



block coordinate descent

Algorithm 1 Block Coordinate Descent Algorithm

1: Let β [0] ∈Rp be an initial parameter vector. Set m =

0.
2: repeat
3: Increase m by one: m← m+1.

Denote by S [m] the index cycling through the
block coordinates {1, . . . ,q}:
S [m] =S [m−1]+1 mod q. Abbreviate by j =S [m]

the value of S [m].
4: if ‖(−∇ρ(β [m−1]

−G j
)G j‖2 ≤ λm j : set β [m]

G j
= 0,

otherwise: β [m]
G j

= argmin
βG j

Qλ(β
[m−1]
+G j

),

where β [m−1]
−G j

is defined in (4.14) and β [m−1]
+G j

is the
parameter vector which equals β [m−1] except for
the components corresponding to group G j whose
entries are equal to βG j (i.e. the argument we min-
imize over).

5: until numerical convergence

1

block-updates where the blocks correspond to the groups



The generalized Group Lasso penalty
Chapter 4.5 in Bühlmann and van de Geer (2011)

pen(β) = λ

q∑
j=1

mj

√
βT
Gj

AjβGj ,

Aj positive definite

can do the computation with standard group Lasso by
transformation:

β̃Gj = A1/2
j βGj ; pen(β̃) = λ

q∑
j=1

mj‖β̃Gj‖2

Xβ =

q∑
j=1

X̃Gj β̃Gj =: X̃ β̃, X̃Gj = XGj A
−1/2
j

can simply solve the “tilde” problem: ; ˆ̃β ; β̂Gj = A−1/2
j

ˆ̃βGj



special but important case: groupwise prediction penalty

pen(β) = λ

q∑
j=1

mj‖XGjβGj‖2 = λ

q∑
j=1

mj

√
βT
Gj

X T
Gj

XGjβGj

X T
Gj

XGj typically positive definite for |Gj | < n

I penalty is invariant under arbitrary reparameterizations
within every group Gj : important!

I when using an orthogonal parameterization such that
X T
Gj

XGj = I: it is the standard Group Lasso
with categorical variables: this is in fact what one has in
mind (can use groupwise orthogonalized design) or one
should use the groupwise prediction penalty
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l 2
−n
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l 2
−n
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m

0
1
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is with groupwise orthogonalized design matrices



High-dimensional additive models
the special case with natural cubic splines

(Ch. 5.3.2 in Bühlmann and van de Geer (2011))

consider the estimation problem wit the SSP penalty:

f̂1, . . . , f̂p = argminf1,...,fp ∈F
(
‖Y −

p∑
j=1

fj‖2n + λ1‖fj‖n + λ2I(fj)
)

where F = Sobolev space of functions on [a, b] that are continuously
differentiable with square integrable second derivatives

Proposition 5.1 in Bühlmann and van de Geer (2011)
Let a,b ∈ R such that a < mini,j(X

(j)
i ) and b > maxi,j(X

(j)
i ). Let

F be as above. Then, the f̂j ’s are natural cubic splines with
knots at X (j)

i , i = 1, . . . ,n.

implication: the optimization over functions is exactly
representable as a parametric problem with dim ≈ 3np (namely
cubic splines)



the optimization over functions is exactly representable as a
parametric problem (with ciubic splines)

therefore:

fj = Hjβj , Hj from natural cubic spline basis

‖fj‖n = ‖Hjβj‖2/
√

n =
√
βT

j HT
j Hjβj/

√
n

I(fj) =

√∫
((Hjβj)

′′)2 =

√√√√βT
j (H

′′

j )
T H

′′

j︸ ︷︷ ︸
=:Wj

β =
√
βT

j Wjβj

; convex problem

β̂ = argminβ

‖Y − Hβ‖22/n + λ1

p∑
j=1

√
βT

j HT
j Hjβj/n + λ2

p∑
j=1

√
βT

j Wjβj





SSP penalty of group Lasso type

for easier computation: instead of

SSP penalty = λ1

∑
j

‖fj‖n + λ2

∑
j

I(fj)

one can also use as an alternative:

SSP Group Lasso penalty = λ1
∑

j

√
‖fj‖2n + λ2I2(fj)

in parameterized form, the latter becomes:

λ1

p∑
j=1

√
‖Hjβj‖22/n + λ2

2β
T
j Wjβj = λ1

p∑
j=1

√
βT

j (H
T
j Hj/n + λ2

2Wj)βj

; for every λ2: a generalized Group Lasso penalty



simulated example: n = 150,p = 200 and 4 active variables
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dotted line: λ2 = 0
; λ2 seems not so important: just consider a few candidate values

(solid and dashed line)



motif regression: n = 287, p = 195
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; a linear model would be “fine as well”



Theoretical properties of high-dimensional additive models

I prediction and function estimation:
compatibility-type assumption for the functions f 0

j
I screening property:

beta-min analogue assumption for non-zero functions f 0
j

see Chapters 5.6 and 8.4 in Bühlmann and van de Geer (2011)



Conclusions

if the problem is sparse and smooth:
only a few X (j)’s influence Y (only a few non-zero f 0

j ) and the
non-zero f 0

j are smooth
; one can often afford to model and fit additive functions in
high dimensions

reason:
I dimensionality is of order dim = O(pn)

log(dim)/n = O((log(p) + log(n))/n) which is still small
I sparsity and smoothness then lead to: if each f 0

j is twice
continuously differentiable

‖f̂ − f 0‖22/n = OP( sparsity︸ ︷︷ ︸
no. of non-zero f 0

j

√
log(p)n−4/5)

(cf. Ch. 8.4 in Bühlmann & van de Geer (2011))


