Theoretical guarantees for Group Lasso

follows “similarly” but with more complicated arguments than for
the Lasso



Algorithm for Group Lasso

consider the KKT conditions for the objective function
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e.g. | Y—Xa|2/n

Lemma (Lemma 4.3 in Bihlmann and van de Geer (2011))
Assume pg = n~1 Y"1 . ps(X;, Y;) is differentiable and convex
(in B). Then, a necessary and sufficient condition for /3 to be a
solution is
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block coordinate descent

Algorithm 1 Block Coordinate Descent Algorithm
- Let B9 € R” be an initial parameter vector. Set m =
0.

2 repeat

3 Increase m by one: m <—m+1.
Denote by .7 the index cycling through the
block coordinates {1,...,q}:
S = =1 1 | mod ¢. Abbreviate by j ="
the value of .71,

s« A (=VP(BY, Vgl < Am;: set B =0,
otherwise: ﬁgjﬂ = arg;nin Ox( J[f;;l]),

]
where ﬁl’tzl] is defined in (4.14) and ﬁkﬁ};]] is the
parameter vector which equals B~ except for
the components corresponding to group ¢; whose
entries are equal to ,ng (i.e. the argument we min-
imize over).

s: until numerical convergence

block-updates where the blocks correspond to the groups



The generalized Group Lasso penalty
Chapter 4.5 in Bihlmann and van de Geer (2011)
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A; positive definite

can do the computation with standard group Lasso by
transformation:

q
g, = A}’ g, ~ pen(B) = x>~ my Bz
j=1
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can simply solve the “tilde” problem: ~» é«» ng = A/-_1/2,§gj



special but important case: groupwise prediction penalty

q q
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= =1
Xg X typically positive definite for |G;| < n

» penalty is invariant under arbitrary reparameterizations
within every group G;: important!

» when using an orthogonal parameterization such that
XgCng = [: it is the standard Group Lasso
with categorical variables: this is in fact what one has in
mind (can use groupwise orthogonalized design) or one
should use the groupwise prediction penalty
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is with groupwise orthogonalized design matrices




High-dimensional additive models

the special case with natural cubic splines
(Ch. 5.3.2 in Bihlmann and van de Geer (2011))
consider the estimation problem wit the SSP penalty:
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where F = Sobolev space of functions on [a, b] that are continuously

differentiable with square integrable second derivatives

Proposition 5.1 in Blihimann and van de Geer (2011)

Let a, b € R such that a < mln,/(X(j)) and b > max; ;(X"). Let
F be as above. Then, the f s are natural cubic splines with
knotsatX,.(/), i=1,....n

implication: the optimization over functions is exactly

representable as a parametric problem with dim ~ 3np (namely
cubic splines)



the optimization over functions is exactly representable as a
parametric problem (with ciubic splines)

therefore:

fi = H;B;, H; from natural cubic spline basis

#lln = [ Hy8ylle/v/n = \/BTHT Hig/ v/

15) =/ [ (H) )2 =

~» convex problem

p P
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SSP penalty of group Lasso type

for easier computation: instead of

SSP penalty = A Y _ [Iflln + Xe > I(f)
J I

one can also use as an alternative:
SSP Group Lasso penalty = A1 Y 1/[Ifil13 + A2 /2(f)
J

in parameterized form, the latter becomes:

p p
M DB IE/n+ XZBTWis = M > (/BT (HT Hy/n + 23 W))5

j=1 =

~» for every \»: a generalized Group Lasso penalty



simulated example: n = 150, p = 200 and 4 active variables

© © ©
<4 < / <
] SN ) “] g
T
1] | L 1\ ] -
T3 = / =
o L g 5 e o N @ o el
i Pl N 1 AN e q B
g 4 9 A o o 22T
<4 <1 + 4
i i i
P o ] P
? a0 g ? Loy e g ey ? g 4wy g g
e e e e e N LA S s S e B S e e e e e
-25 -15 -05 0.5 15 25 -25 -15 -0.5 0.5 15 25 -25 -15 -0.5 0.5 15 25
Xy X X3
© I © ©
< A \ <« A < A
~ o \ o ~ o
o A ‘\ e ———— £ o4 ———
51 TStaa 5] 51
<1 <] <]
i i i
P o ] P
? L a1 g ? ot g s ? o g g gy g
AL LALLM LA s s R S A LA e s s s s S B B
-25 -15 -0.5 0.5 15 25 -25 -15 -05 0.5 15 25 -25 -15 -0.5 0.5 15 25
X4 X5 X5

dotted line: Ao =0
~ A2 seems not so important: just consider a few candidate values

(solid and dashed line)
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motif regression: n =287, p =195
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~+ a linear model would be “fine as well”



Theoretical properties of high-dimensional additive models

» prediction and function estimation:
compatibility-type assumption for the functions fj0

» screening property:
beta-min analogue assumption for non-zero functions 1;0

see Chapters 5.6 and 8.4 in Bihlmann and van de Geer (2011)



Conclusions
if the problem is sparse and smooth:
only a few X(U)’s influence Y (only a few non-zero f?) and the

non-zero f° are smooth
~> one can often afford to model and fit additive functions in
high dimensions

reason:

» dimensionality is of order dim = O(pn)
log(dim)/n = O((log(p) + log(n))/n) which is still small

» sparsity and smoothness then lead to: if each 1}0 is twice
continuously differentiable

IF—P18/n=0p(  sparsity  \/log(p)n /%)
N——

no. of non-zero fj0

(cf. Ch. 8.4 in Bihlmann & van de Geer (2011))



