
II.4.2 Some results from asymptotic theory

asymptotics when p = pn (typically� n, →∞) and n→∞

triangular array asymptotics:

(X ,Y )n;1, . . . , (X ,Y )n;n

(X ,Y )n+1;1, . . . , (X ,Y )n+1;n, (X ,Y )n+1;n+1

(X ,Y )n+2;1, . . . , (X ,Y )n+2;n, (X ,Y )n+2;n+1, (X ,Y )n+2;n+2

...

Yn,i =

pn∑
j=1

β0
n;jX

(j)
n;i + εn;i . i = 1, . . . ,n, n = 1,2, . . .

E[εn;i ] = 0 and usually fixed design X

but we usually do not emphasize the dependence on n



announcement of a few results:
1. for fixed design: if ‖β0‖1 = o(

√
n

log(p)), then

‖X (β̂ − β0)‖22/n = oP(1)

slow rate, just consistency
2. for fixed design which satisfies a “compatibility condition”

(restricted eigenvalue condition) with constant φ2
0 > 0:

‖X (β̂ − β0)‖22/n = OP

(
s0 log(p)

n
1
φ2

0

)

‖β̂ − β0‖1 = oP

(
s0

√
log(p)

n
1
φ2

0

)
s0 = |S0| = |{j ; β0

j 6= 0}|

φ2
0 close to zero means “badly conditioned (highly

correlated)” columns of X



Developing the theory for announced results
Corollary 6.1. in Bühlmann and van de Geer (2011)

Corollary 6.1
assume:
I ε ∼ Nn(0, σ2I)
I scaled columns σ̂2

j ≡ 1 ∀ j
For

λ = 4σ̂

√
t2 + 2 log(p)

n

where σ̂ is an estimator for σ. Then, with probability at least
1− α where

α = 2 exp(−t2/2) + P[σ̂ < σ]

we have that

‖X (β̂ − β0)‖22/n ≤
3
2
λ‖β0‖1



Implications and Asymptotic viewpoint
the proper λ �

√
log(p)/n (take e.g. t2 � log(p))

Corollary 6.1 implies:

‖X (β̂ − β0)‖22/n = OP( λ︸︷︷︸
�
√

log(p)/n

‖β0‖1) = OP(
√

log(p)/n‖β0‖1)

even for very sparse case with ‖β0‖1 = O(1):
slow convergence rate of order OP(

√
log(p)/n)

benchmark: OLS oracle on the variables from S0 = {j ; β0
j 6= 0}

‖X (β̂OLS−oracle − β0)‖22/n = OP(s0/n), s0 = |S0|

we will later derive for the Lasso, under additional assumptions on X : fast
convergence rate

‖X (β̂ − β0)‖2
2/n = OP(log(p)

s0

n
) (if φ2

0 bounded away from zero)



for slow rate: no assumptions on X (could have perfectly
correlated columns)



Proof of such results: see visualizer



Extensions

the proof technique decouples into a deterministic and
probabilistic part (the set T )

the deterministic part remains the same for other probabilistic
structures (other analysis for P[T ]) such as:
I heteroscedastic errors with

E[εi ] = 0, Var(εi) = σ2
i 6≡ const.

I dependent observations ; for fixed design, dependent
errors

I non-Gaussian errors
sub-Gaussian distribution
second moments plus bounded X : see Example 14.3 in
Bühlmann and van de Geer (2011)

I random design: assume that ε is independent of X
; condition on X : invoke the results for fixed design and
integrate out



heteroscedastic errors

ε ∼ Nn(0,D), where D = diag(σ2
1, . . . , σ

2
n)

assume that: σ2
i ≤ σ2︸︷︷︸

some pos. const.
<∞

Then, Corollary 6.1 remains true with σ2 as above

Proof:
exactly as before but exploiting that Vj ∼ N (0, τ2

j ) with τj ≤ 1
and using that P[|Vj | > c] ≤ P[ |Z |︸︷︷︸

∼|N (0,1)|

> c]

Exercise: work out the details.



errors from stationary distribution

ε ∼ Nn(0, Γ), where Γi,j = R(i − j) = R(j − i)
assume that:

∑∞
k=−∞ |R(k)| <∞ and |X (j)

i | ≤ KX <∞

Then, Corollary 6.1 remains true with σ2 = K 2
X
∑∞

k=−∞ |R(k)|

Proof:
Exercise. (A bit more tricky...)


