
The Annals of Statistics
2022, Vol. 50, No. 3, 1320–1347
https://doi.org/10.1214/21-AOS2152
© Institute of Mathematical Statistics, 2022

DOUBLY DEBIASED LASSO: HIGH-DIMENSIONAL INFERENCE UNDER
HIDDEN CONFOUNDING
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Inferring causal relationships or related associations from observational
data can be invalidated by the existence of hidden confounding. We focus on
a high-dimensional linear regression setting, where the measured covariates
are affected by hidden confounding and propose the doubly debiased lasso
estimator for individual components of the regression coefficient vector. Our
advocated method simultaneously corrects both the bias due to estimation of
high-dimensional parameters as well as the bias caused by the hidden con-
founding. We establish its asymptotic normality and also prove that it is ef-
ficient in the Gauss–Markov sense. The validity of our methodology relies
on a dense confounding assumption, that is, that every confounding variable
affects many covariates. The finite sample performance is illustrated with an
extensive simulation study and a genomic application. The method is imple-
mented by the DDL package available from CRAN.

1. Introduction. Observational studies are often used to infer causal relationship in
fields such as genetics, medicine, economics or finance. A major concern for confirmatory
conclusions is the existence of hidden confounding [28, 45]. In this case, standard statisti-
cal methods can be severely biased, particularly for large-scale observational studies, where
many measured covariates are possibly confounded.

To better address this problem, let us consider first the following linear Structural Equa-
tion Model (SEM) with a response Yi , high-dimensional measured covariates Xi,· ∈ R

p and
hidden confounders Hi,· ∈ R

q :

(1) Yi ← βᵀXi,· + φᵀHi,· + ei, and Xi,· ← �ᵀHi,· + Ei,· for 1 ≤ i ≤ n,

where the random error ei ∈ R is independent of Xi,· ∈ R
p , Hi,· ∈ R

q and Ei,· ∈ R
p and the

components of Ei,· ∈ R
p are uncorrelated with the components of Hi,· ∈ R

q . The focus on a
SEM as in (1) is not necessary and we relax this restriction in model (2) below. Such kind of
models are used, for example, in biological studies to explore the effects of measured genetic
variants on the disease risk factor, and the hidden confounders can be geographic information
[49], data sources in mental analysis [52] or general population stratification in GWAS [46].

Our aim is to perform statistical inference for individual components βj , 1 ≤ j ≤ p, of
the coefficient vector, where p can be large, in terms of obtaining confidence intervals or
statistical tests. This inference problem is challenging due to high dimensionality of the model
and the existence of hidden confounders. As a side remark, we mention that our proposed
methodology can also be used for certain measurement error models, an important general
topic in statistics and economics [11, 64].
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1.1. Our results and contributions. We focus on a dense confounding model, where the
hidden confounders Hi,· in (1) are associated with many measured covariates Xi,·. Such dense
confounding model seems reasonable in quite many practical applications, for example, for
addressing the problem of batch effects in biological studies [31, 36, 41].

We propose a two-step estimator for the regression coefficient βj for 1 ≤ j ≤ p in the high-
dimensional dense confounding setting, where a large number of covariates have possibly
been affected by hidden confounding. In the first step, we construct a penalized spectral
deconfounding estimator β̂ init as in [12], where the standard squared error loss is replaced
by a squared error loss after applying a certain spectral transformation to the design matrix
X and the response Y . In the second step, for the regression coefficient of interest βj , we
estimate the high-dimensional nuisance parameters β−j = {βl; l �= j} by β̂ init−j and construct
an approximately unbiased estimator β̂j .

The main idea of the second step is to correct the bias from two sources, one from esti-
mating the high-dimensional nuisance vector β−j by β̂ init−j and the other arising from hidden
confounding. In the standard high-dimensional regression setting with no hidden confound-
ing, debiasing, desparsifying or Neyman’s orthogonalization were proposed for inference for
βj [4, 14, 16, 22, 34, 58, 66]. However, these methods, or some of its direct extensions,
do not account for the bias arising from hidden confounding. In order to address this issue,
we introduce a doubly debiased lasso estimator, which corrects both biases simultaneously.
Specifically, we construct a spectral transformation P(j) ∈R

n×n, which is applied to the nui-
sance design matrix X−j when the parameter of interest is βj . This spectral transformation
is crucial to simultaneously correcting the two sources of bias.

We establish the asymptotic normality of the proposed doubly debiased lasso estimator
in Theorem 1. An efficiency result is also provided in Theorem 2 of Section 4.2.1, showing
that the doubly debiased lasso estimator retains the same Gauss–Markov efficiency bound
as in standard high-dimensional linear regression with no hidden confounding [33, 58]. Our
result is in sharp contrast to Instrumental Variables (IV) based methods (see Section 1.2),
whose inflated variance is often of concern, especially with a limited amount of data [6,
64]. This remarkable efficiency result is possible by assuming denseness of confounding.
Various intermediary results of independent interest are also derived in Section A of the
Supplementary Material [29]. Finally, the performance of the proposed estimator is illustrated
on simulated and real genomic data in Section 5.

To summarize, our main contribution is twofold:

1. We propose a novel doubly debiased lasso estimator for individual coefficients βj and
estimation of the corresponding standard error in a high-dimensional linear SEM with hidden
confounding.

2. We show that the proposed estimator is asymptotically Gaussian and efficient in the
Gauss–Markov sense. This implies the construction of asymptotically optimal confidence
intervals for individual coefficients βj .

1.2. Related work. In econometrics, hidden confounding and measurement errors are
unified under the framework of endogenous variables. Inference for treatment effects or cor-
responding regression parameters in presence of hidden confounders or measurement errors
has been extensively studied in the literature with Instrumental Variables (IV) regression. The
construction of IVs typically requires a lot of domain knowledge, and obtained IVs are often
suspected of violating the main underlying assumptions [8, 30, 32, 37, 63, 64]. In high dimen-
sions, the construction of IVs is even more challenging, since for identification of the causal
effect, one has to construct as many IVs as the number of confounded covariates, which is
the so-called “rank condition” [64]. Some recent work on the high-dimensional hidden con-
founding problem relying on the construction of IVs includes [3, 19, 24, 26, 43, 48, 68].
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Another approach builds on directly estimating and adjusting with respect to latent factors
[62].

A major distinction of the current work from the contributions above is that we consider a
confounding model with a denseness assumption [12, 13, 55]. [12] consider point estimation
of β in the high-dimensional hidden confounding model (1), whereas [55] deal with point
estimation of the precision and covariance matrix of high-dimensional covariates, which are
possibly confounded. The current paper is different in that it considers the challenging prob-
lem of confidence interval construction, which requires novel ideas for both methodology and
theory.

The dense confounding model is also connected to the high-dimensional factor models [18,
21, 39, 40, 61]. The main difference is that the factor model literature focuses on accurately
extracting the factors, while our method is essentially filtering them out in order to provide
consistent estimators of regression coefficients, under much weaker requirements than for the
identification of factors.

Another line of research [23, 57, 60] studies the latent confounder adjustment models but
focuses on a different setting where many outcome variables can be possibly associated with
a small number of observed covariates and several hidden confounders.

Notation. We use Xj ∈ R
n and X−j ∈ R

n×(p−1) to denote the j th column of the ma-
trix X and the submatrix of X excluding the j th column, respectively; Xi,· ∈ R

p is used
to denote the ith row of the matrix X (as a column vector); Xi,j and Xi,−j denote respec-
tively the (i, j) entry of the matrix X and the subrow of Xi,· excluding the j th entry. Let
[p] = {1,2, . . . , p}. For a subset J ⊆ [p] and a vector x ∈ R

p , xJ is the subvector of x with
indices in J and x−J is the subvector with indices in J c. For a set S, |S| denotes the car-

dinality of S. For a vector x ∈ R
p , the �q norm of x is defined as ‖x‖q = (

∑p
l=1 |xl|q)

1
q

for q ≥ 0 with ‖x‖0 = |{1 ≤ l ≤ p : xl �= 0}| and ‖x‖∞ = max1≤l≤p |xl|. We use ei to de-
note the i-th standard basis vector in R

p and Ip to denote the identity matrix of size p × p.
We use c and C to denote generic positive constants that may vary from place to place.
For a sub-Gaussian random variable X, we use ‖X‖ψ2 to denote its sub-Gaussian norm;
see definitions 5.7 and 5.22 in [59]. For a sequence of random variables Xn indexed by n,

we use Xn
p→ X and Xn

d→ X to represent that Xn converges to X in probability and in
distribution, respectively. For a sequence of random variables Xn and numbers an, we de-
fine Xn = op(an) if Xn/an converges to zero in probability. For two positive sequences an

and bn, an � bn means that ∃C > 0 such that an ≤ Cbn for all n; an � bn if an � bn and
bn � an, and an  bn if lim supn→∞ an/bn = 0. For a matrix M , we use ‖M‖F , ‖M‖2 and
‖M‖∞ to denote its Frobenius norm, spectral norm and elementwise maximum norm, re-
spectively. We use λj (M) to denote the j th largest singular value of some matrix M , that is,
λ1(M) ≥ λ2(M) ≥ · · · ≥ λq(M) ≥ 0. For a symmetric matrix A, we use λmax(A) and λmin(A)

to denote its maximum and minimum eigenvalues, respectively.

2. Hidden confounding model. We consider the hidden confounding model for i.i.d.
data {Xi,·, Yi}1≤i≤n and unobserved i.i.d. confounders {Hi,·}1≤i≤n, given by

(2) Yi = βᵀXi,· + φᵀHi,· + ei and Xi,· = �ᵀHi,· + Ei,·,
where Yi ∈ R and Xi,· ∈ R

p , respectively, denote the response and the measured covariates
and Hi,· ∈ R

q represents the hidden confounders. We assume that the random error ei ∈ R

is independent of Xi,· ∈ R
p , Hi,· ∈ R

q and Ei,· ∈ R
p and the components of Ei,· ∈ R

p are
uncorrelated with the components of Hi,· ∈R

q .
The coefficient matrices � ∈ R

q×p and φ ∈ R
q×1 encode the linear effect of the hidden

confounders Hi,· on the measured covariates Xi,· and the response Yi , respectively. We con-
sider the high-dimensional setting where p might be much larger than n. Throughout the
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paper, it is assumed that the regression vector β ∈ R
p is sparse, with a small number k of

nonzero components, and that the number q of confounding variables is a small positive in-
teger. However, both k and q are allowed to grow with n and p. We write �E or �X for the
covariance matrices of Ei,· or Xi,·, respectively. Without loss of generality, it is assumed that
EXi,· = 0, EHi,· = 0, Cov(Hi,·) = Iq , and hence �X = �ᵀ� + �E .

The probability model (2) is more general than the structural equation model in (1). It
only describes the observational distribution of the latent variable Hi,· and the observed data
(Xi,·, Yi), which possibly may be generated from the hidden confounding SEM (1).

Our goal is to construct confidence intervals for the components of β , which in the model
(1) describes the causal effect of X on the response Y . The problem is challenging due to
the presence of unobserved confounding. In fact, the regression parameter β cannot even
be identified without additional assumptions. Our main condition addressing this issue is a
denseness assumption that the rows �j,· ∈ R

p are dense in a certain sense (see Condition (A2)
in Section 4), that is, many covariates of Xi,· ∈ R

p are simultaneously affected by hidden
confounders Hi,· ∈ R

q .

2.1. Representation as a linear model. The hidden confounding model (2) can be repre-
sented as a linear model for the observed data {Xi,·, Yi}1≤i≤n:

(3) Yi = (β + b)ᵀXi,· + εi and Xi,· = �ᵀHi,· + Ei,·,

by writing

εi = ei + φᵀHi,· − bᵀXi,· and b = �−1
X �ᵀφ.

As in (2), we assume that Ei,· is uncorrelated with Hi,· and, by construction of b, εi is un-
correlated with Xi,·. With σ 2

e denoting the variance of ei , the variance of the error εi equals
σ 2

ε = σ 2
e + φᵀ(Iq − ��−1

X �ᵀ)φ. In model (3), the response is generated from a linear model
where the sparse coefficient vector β has been perturbed by some perturbation vector b ∈ R

p .
This representation reveals how the parameter of interest β is not in general identifiable from
observational data, where one can not easily differentiate it from the perturbed coefficient
vector β + b, with the perturbation vector b induced by hidden confounding. However, as
shown in Lemma 2 in the Supplementary Material [29], b is dense and ‖b‖2 is small for
large p under the assumption of dense confounding, which enables us to identify β asymp-
totically. It is important to note that the term bᵀXi,· induced by hidden confounders Hi,· is
not necessarily small and hence cannot be simply ignored in model (3), but requires novel
methodological approach.

Connection to measurement errors. We briefly relate certain measurement error models to
the hidden confounding model (2). Consider a linear model for the outcome Yi and covariates
X0

i· ∈ R
p , where we only observe Xi,· ∈ R

p with measurement error Wi,· ∈ R
p:

(4) Yi = βᵀX0
i· + ei and Xi,· = X0

i,· + Wi,· for 1 ≤ i ≤ n.

Here, ei is a random error independent of X0
i,· and Wi,·, and Wi,· is the measurement error

independent of X0
i . We can then express a linear dependence of Yi on the observed Xi,·,

Yi = βᵀXi,· + (
ei − βᵀWi,·

)
and Xi,· = Wi,· + X0

i,·.

We further assume the following structure of the measurement error:

Wi,· = �ᵀHi,·,
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that is, there exist certain latent variables Hi,· ∈R
q that contribute independently and linearly

to the measurement error, a conceivable assumption in some practical applications. Combin-
ing this with the equation above, we get

(5) Yi = βᵀXi,· + (
ei − φᵀHi,·

)
and Xi,· = �ᵀHi,· + X0

i·,
where φ = �β ∈ R

q . Therefore, the model (5) can be seen as a special case of the model (2),
by identifying X0

i· in (5) with Ei,· in (2).

3. Doubly debiased lasso estimator. In this section, for a fixed index j ∈ {1, . . . , p},
we propose an inference method for the regression coefficient βj of the hidden confounding
model (2). The validity of the method is demonstrated by considering the equivalent model
(3).

3.1. Double debiasing. We denote by β̂ init an initial estimator of β . We will use the
spectral deconfounding estimator proposed in [12], described in detail in Section 3.4. We
start from the following decomposition:

(6) Y − X−j β̂
init−j = Xj(βj + bj ) + X−j

(
β−j − β̂ init−j

)+ X−j b−j + ε for j ∈ {1, . . . , p}.
The above decomposition reveals two sources of bias: the bias X−j (β−j − β̂ init−j ) due to the

error of the initial estimator β̂ init and the bias X−j b−j induced by the perturbation vector b

in the model (3), arising by marginalizing out the hidden confounding in (2). Note that the
bias bj is negligible in the dense confounding setting; see Lemma 2 in the Supplementary
Material [29]. The first bias, due to penalization, appears in the standard high-dimensional
linear regression as well, and can be corrected with the debiasing methods proposed in [34,
58, 66] when assuming no hidden confounding. However, in presence of hidden confounders,
methodological innovation is required for correcting both bias terms and conducting the re-
sulting statistical inference. We propose a novel doubly debiased lasso estimator for correct-
ing both sources of bias simultaneously.

Denote by P(j) ∈ R
n×n a symmetric spectral transformation matrix, which shrinks the

singular values of the subdesign X−j ∈ R
n×(p−1). The detailed construction, together with

some examples, is given in Section 3.3. We shall point out that the construction of the trans-
formation matrix P(j) depends on which coefficient βj is our target, and hence refer to P(j)

as the nuisance spectral transformation with respect to the coefficient βj . Multiplying both
sides of the decomposition (6) with the transformation P(j) gives

(7)
P(j)(Y − X−j β̂

init−j

)
= P(j)Xj (βj + bj ) +P(j)X−j

(
β−j − β̂ init−j

)+P(j)X−j b−j +P(j)ε.

The quantity of interest βj appears on the RHS of the equation (7) next to the vector
P(j)Xj , whereas the additional bias lies in the span of the columns of P(j)X−j . For this
reason, we construct a projection direction vector P(j)Zj ∈ R

n as the transformed residuals
of regressing Xj on X−j :

(8) Zj = Xj − X−j γ̂ ,

where the coefficients γ̂ are estimated with the lasso for the transformed covariates using
P(j):

(9) γ̂ = arg min
γ∈Rp−1

{
1

2n

∥∥P(j)Xj −P(j)X−j γ
∥∥2

2 + λj

∑
l �=j

‖P(j)Xl‖2√
n

|γl|
}
,

with λj = Aσj

√
logp/n for some positive constant A >

√
2 (for σj , see Section 4.1).
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Finally, motivated by the equation (7), we propose the following estimator for βj :

(10) β̂j = (P(j)Zj )
ᵀP(j)(Y − X−j β̂

init−j )

(P(j)Zj )ᵀP(j)Xj

.

We refer to this estimator as the doubly debiased lasso estimator as it simultaneously corrects
the bias induced by β̂ init and the confounding bias X−j b−j by using the spectral transforma-
tion P(j).

In the following, we briefly explain why the proposed estimator estimates βj well. We
start with the following error decomposition of β̂j , derived from (7):

(11)

β̂j − βj = (P(j)Zj )
ᵀP(j)ε

(P(j)Zj )ᵀP(j)Xj︸ ︷︷ ︸
Variance

+ (P(j)Zj )
ᵀP(j)X−j (β−j − β̂ init−j )

(P(j)Zj )ᵀP(j)Xj

+ (P(j)Zj )
ᵀP(j)X−j b−j

(P(j)Zj )ᵀP(j)Xj

+ bj︸ ︷︷ ︸
Remaining Bias

.

In the above equation, the bias after correction consists of two components: the remaining
bias due to the estimation error of β̂ init−j and the remaining confounding bias due to X−j b−j

and bj . These two components can be shown to be negligible in comparison to the variance
component under certain model assumptions; see Theorem 1 and its proof for details. Intu-
itively, the construction of the spectral transformation matrix P(j) is essential for reducing

the bias due to the hidden confounding. The term (P(j)Zj )ᵀP(j)X−j b−j

(P(j)Zj )ᵀP(j)Xj
in equation (11) is of a

small order because P(j) shrinks the leading singular values of X−j , and hence P(j)X−j b−j

is significantly smaller than X−j b−j . The induced bias X−j b−j is not negligible since b−j

points in the direction of leading right singular vectors of X−j , thus leading to ‖ 1√
n
X−j b−j‖2

being of constant order. By applying a spectral transformation to shrink the leading singular
values, one can show that ‖ 1√

n
P(j)X−j b−j‖2 = Op(1/

√
min{n,p}).

Furthermore, the other remaining bias term
(P(j)Zj )ᵀP(j)X−j (β−j−β̂ init−j )

(P(j)Zj )ᵀP(j)Xj
in (11) is small since

the initial estimator β̂ init is close to β in �1 norm and P(j)Zj and P(j)X−j are nearly orthog-
onal due to the construction of γ̂ in (9). This bias correction idea is analogous to the debiased
lasso estimator introduced in [66] for the standard high-dimensional linear regression:

(12) β̂DB
j = (ZDB

j )ᵀ(Y − X−j β̂
init−j )

(ZDB
j )ᵀXj

,

where ZDB
j is constructed similarly as in (8) and (9) with setting P(j) as the identity matrix.

Therefore, the main difference between the estimator in (12) and our proposed estimator (10)
is that we additionally apply the nuisance spectral transformation P(j).

We emphasize that the additional spectral transformation P(j) is necessary even for
just correcting the bias of β̂ init−j in presence of confounding (i.e., it is also needed for
the first besides the second bias term in (11)). To see this, we define the best linear
projection of X1,j to all other variables X1,−j ∈ R

p−1 with the coefficient vector γ =
[E(Xi,−jX

ᵀ
i,−j )]−1

E(Xi,−jXi,j ) ∈ R
p−1 (which is then estimated by the lasso in the stan-

dard construction of ZDB
j ). We notice that γ need not be sparse due to the fact that all co-

variates are affected by a common set of hidden confounders yielding spurious associations.
Hence, the standard construction of ZDB

j in (12) is not favorable in the current setting. In
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contrast, the proposed method with P(j) works for two reasons: first, the application of P(j)

in (9) leads to a consistent estimator of the sparse component of γ , denoted as γ E (see the
expression of γ E in Lemma 1); second, the application of P(j) leads to a small prediction
error P(j)X−j (γ̂ − γ E). We illustrate in Section 5 how the application of P(j) corrects the
bias due to β̂ init−j and observe a better empirical coverage after applying P(j) in comparison
to the standard debiased lasso in (12); see Figure 7.

3.2. Confidence interval construction. In Section 4, we establish the asymptotic normal
limiting distribution of the proposed estimator β̂j under certain regularity conditions. Its stan-

dard deviation can be estimated by

√
σ̂ 2

e ·Zᵀ
j (P(j))4Zj

[Zᵀ
j (P(j))2Xj ]2 with σ̂e denoting a consistent estimator

of σe. The detailed construction of σ̂e is described in Section 3.5. Therefore, a confidence
interval (CI) with asymptotic coverage 1 − α can be obtained as

(13) CI(βj ) =
(
β̂j − z1− α

2

√√√√ σ̂ 2
e · Zᵀ

j (P(j))4Zj

[Zᵀ
j (P(j))2Xj ]2

, β̂j + z1− α
2

√√√√ σ̂ 2
e · Zᵀ

j (P(j))4Zj

[Zᵀ
j (P(j))2Xj ]2

)
,

where z1− α
2

is the 1 − α
2 quantile of a standard normal random variable.

3.3. Construction of spectral transformations. Construction of the spectral transforma-
tion P(j) ∈ R

n×n is an essential step for the doubly debiased lasso estimator (10). The trans-
formation P(j) ∈R

n×n is a symmetric matrix shrinking the leading singular values of the de-
sign matrix X−j ∈ R

n×(p−1). Denote by m = min{n,p − 1} and the SVD of the matrix X−j

by X−j = U(X−j )(X−j )[V (X−j )]ᵀ, where U(X−j ) ∈ R
n×m and V (X−j ) ∈ R

(p−1)×m

have orthonormal columns and (X−j ) ∈ R
m×m is a diagonal matrix of singular values,

which are sorted in a decreasing order 1,1(X−j ) ≥ 2,2(X−j ) ≥ · · · ≥ m,m(X−j ) ≥ 0. We
then define the spectral transformation P(j) for X−j as P(j) = U(X−j )S(X−j )[U(X−j )]ᵀ,
where S(X−j ) ∈ R

m×m is a diagonal shrinkage matrix with 0 ≤ Sl,l(X−j ) ≤ 1 for 1 ≤ l ≤ m.
The SVD for the complete design matrix X is defined analogously. We highlight the depen-
dence of the SVD decomposition on X−j , but for simplicity it will be omitted when there
is no confusion. Note that P(j)X−j = U(S)V ᵀ, so the spectral transformation shrinks the
singular values {l,l}1≤l≤m to {Sl,ll,l}1≤l≤m, where l,l = l,l(X−j ).

Trim transform. For the rest of this paper, the spectral transformation that is used is the Trim
transform [12]. It limits any singular value to be at most some threshold τ . This means that
the shrinkage matrix S is given as: for 1 ≤ l ≤ m,

Sl,l =
{
τ/l,l if l,l > τ,

1 otherwise.

A good default choice for the threshold τ is the median singular value �m/2�,�m/2�, so
only the top half of the singular values is shrunk to the bulk value �m/2�,�m/2� and the
bottom half is left intact. More generally, one can use any percentile ρj ∈ (0,1) to shrink the
top (100ρj )% singular values to the corresponding ρj -quantile �ρjm�,�ρj m�. We define the
ρj -Trim transform P(j) as

(14)

P(j) = U(X−j )S(X−j )
[
U(X−j )

]ᵀ with

Sl,l(X−j ) =
⎧⎪⎨⎪⎩

�ρjm�,�ρjm�(X−j )

l,l(X−j )
if l ≤ �ρjm�,

1 otherwise.
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In Section 4, we investigate the dependence of the asymptotic efficiency of the resulting
doubly debiased lasso β̂j on the percentile choice ρj = ρj (n). There is a certain trade-off
in choosing ρj : a smaller value of ρj leads to a more efficient estimator, but one needs to
be careful to keep ρjm sufficiently large compared to the number of hidden confounders q ,
in order to ensure reduction of the confounding bias. In Section A.1 of the Supplementary
Material [29], we describe the general conditions that the used spectral transformations need
to satisfy to ensure good performance of the resulting estimator.

Other constructions of spectral transformations include the spectral transformation in-
duced by the LAVA estimator [15], the Puffer transformation [35], and the PCA adjustment
[50]. See more detailed discussions in Section 3.2.1 in [12].

3.4. Initial estimator β̂init . For the doubly debiased lasso (10), we use the spectral de-
confounding estimator proposed in [12] as our initial estimator β̂ init. It uses a spectral trans-
formation Q = Q(X), constructed similarly as the transformation P(j) described in Sec-
tion 3.3, with the difference that instead of shrinking the singular values of X−j , Q shrinks
the leading singular values of the whole design matrix X ∈ R

n×p . Specifically, for any per-
centile ρ ∈ (0,1), the ρ-Trim transform Q is given by

(15) Q = U(X)S(X)
[
U(X)

]ᵀ with Sl,l(X) =
⎧⎪⎨⎪⎩

�ρm�,�ρm�(X)

l,l(X)
if l ≤ �ρm�,

1 otherwise.

The estimator β̂ init is computed by applying the lasso to the transformed data QX and QY :

(16) β̂ init = arg min
β∈Rp

1

2n

∥∥Q(y − Xβ)
∥∥2

2 + λ

p∑
j=1

‖QX·j‖2√
n

|βj |,

where λ = Aσe

√
logp/n is a tuning parameter with A >

√
2.

The transformation Q reduces the effect of the confounding and thus helps for estimation
of β . In Section A.3, the �1 and �2-error rates of β̂ init are given, thereby extending the results
of [12].

3.5. Noise level estimator. In addition to an initial estimator of β , we also require a con-
sistent estimator σ̂ 2

e of the error variance σ 2
e = E(e2

i ) for construction of confidence intervals.
Choosing a noise level estimator which performs well for a wide range of settings is not easy
to do in practice [54]. We propose using the following estimator:

(17) σ̂ 2
e = 1

Tr(Q2)

∥∥Qy −QXβ̂ init∥∥2
2,

where Q is the same spectral transformation as in (16).
The motivation for this estimator is based on the expression

(18) Qy −QXβ̂ init =Qε +QX
(
β − β̂ init)+QXb,

which follows from the model (3). The consistency of the proposed noise level estimator,
formally shown in Proposition 2, follows from the following observations: the initial spectral
deconfounding estimator β̂ init has a good rate of convergence for estimating β; the spec-
tral transformation Q significantly reduces the additional error Xb induced by the hidden
confounders; ‖Qε‖2

2/Tr(Q2) consistently estimates σ 2
ε . Additionally, the dense confounding

model is shown to lead to a small difference between the noise levels σ 2
ε and σ 2

e ; see Lemma 2
in the Supplementary Material [29]. In Section 4, we show that variance estimator σ̂ 2

e defined
in (17) is a consistent estimator of σ 2

e .
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Algorithm 1 Doubly debiased lasso

Input: Data X ∈ R
n×p , Y ∈ R

n; index j , tuning parameters ρ,ρj ∈ (0,1) and λ > 0,
λj > 0

Output: Point estimator β̂j , standard error estimate σ̂ 2
e and confidence interval CI(βj )

1: Q ← TRIMTRANSFORM(X,ρ) � construct ρ-trim as in (15)
2: β̂ init ← LASSO(QX,QY,λ) � Lasso regression with transformed data, see (16)

3: P(j) ← TRIMTRANSFORM(X−j , ρj ) � construct ρj -trim as in (14)
4: γ̂ ← LASSO(P(j)X−j ,P(j)Xj , λj ) � Lasso regression with transformed data, see (9)
5: P(j)Zj ←P(j)Xj −P(j)X−j γ̂ � take the residuals as the projection direction
6: β̂j ← DEBIASEDLASSO(β̂ init,P(j)X−j ,P(j)Xj ,P(j)Zj )

� compute doubly debiased lasso as in (12)

7: σ̂ 2
e ← NOISELEVEL(X,Y, β̂ init,Q) � compute noise level as in (17)

8: CI(βj ) ← CONFIDENCEINTERVAL(β̂j ,P(j)Xj ,P(j)Zj , σ̂
2
e , α)

� compute the (1 − α)-CI as in (13)

3.6. Method overview and choice of the tuning parameters. The doubly debiased lasso
needs specification of various tuning parameters. A good and theoretically justified rule of
thumb is to use the Trim transform with ρ = ρj = 1/2, which shrinks the large singular values
to the median singular value; see (14). Furthermore, similar to the standard debiased lasso
[66], our proposed method involves the regularization parameters λ in the lasso regression for
the initial estimator β̂ init (see equation (16)) and λj in the lasso regression for the projection
direction P(j)Zj (see equation (9)). For choosing λ, we use tenfold cross-validation, whereas
for λj , we increase slightly the penalty chosen by the tenfold cross-validation, so that the
variance of our estimator, which can be determined from the data up to a proportionality
factor σ 2

e , increases by 25%, as proposed in [17].
The proposed doubly debiased lasso method is summarized in Algorithm 1, which also

highlights where each tuning parameter is used.

4. Theoretical justification. This section provides theoretical justifications of the pro-
posed method for the hidden confounding model (2). The proofs of the main results are
presented in Sections A and B in the Supplementary Material [29] together with several other
technical results of independent interest.

4.1. Model assumptions. In the following, we fix the index 1 ≤ j ≤ p and introduce the
model assumptions for establishing the asymptotic normality of our proposed estimator β̂j

defined in (10). For the coefficient matrix � ∈ R
q×p in (3), we use �j ∈ R

q to denote the
j th column and �−j ∈ R

q×(p−1) denotes the submatrix with the remaining p − 1 columns.
Furthermore, we write γ for the best linear approximation of X1,j ∈ R by X1,−j ∈ R

p−1,
that is, γ = arg minγ ′∈Rp−1 E(X1,j − X1,−j γ

′)2, whose explicit expression is

γ = [
E
(
X1,−jX

ᵀ
1,−j

)]−1
E(X1,−jX1,j ).

For ease of notation, we do not explicitly express the dependence of γ on j . Similarly, define

γ E = [
E
(
E1,−jE

ᵀ
1,−j

)]−1
E(E1,−jE1,j ).

We denote the corresponding residuals by ηi,j = Xi,j − X
ᵀ
i,−j γ and νi,j = Ei,j − E

ᵀ
i,−j γ

E

for 1 ≤ i ≤ n. We use σj to denote the standard deviation of νi,j .
The first assumption is on the precision matrix of Ei,· ∈ R

p in (2):
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(A1) The precision matrix �E = [E(Ei,·Eᵀ
i,·)]−1 satisfies c0 ≤ λmin(�E) ≤ λmax(�E) ≤

C0 and ‖(�E)·,j‖0 ≤ s where C0 > 0 and c0 > 0 are some positive constants and s denotes
the sparsity level which can grow with n and p.

Such assumptions on well-posedness and sparsity are commonly required for estimation of
the precision matrix [9, 38, 47, 65] and are also used for confidence interval construction
in the standard high-dimensional regression model without unmeasured confounding [58].
Here, the conditions are not directly imposed on the covariates Xi,·, but rather on their un-
confounded part Ei,·. In the high-dimensional linear model without hidden confounders, the
sparse precision matrix assumption can be relaxed using the technique in [34]. However, it
is unclear whether the method in [34] can be generalized to our model due to the additional
hidden confounding bias as in (11).

The second assumption is about the coefficient matrix � in (3), which describes the effect
of the hidden confounding variables Hi,· ∈ R

q on the measured variables Xi,· ∈R
p:

(A2) The qth singular value of the coefficient matrix �−j ∈ R
q×(p−1) satisfies

(19) λq(�−j ) � l(n,p, q) := max
{
M

√
qp

n
(logp)3/4,

√
Mqp1/4(logp)3/8,

√
qn logp

}
,

where M is the sub-Gaussian norm for components of Xi,., as defined in Assumption (A3).
Furthermore, we have

(20) max
{∥∥�(�E)·,j

∥∥
2,‖�j‖2,

∥∥�−j (�E)−j,j

∥∥
2,‖φ‖2

}
�√

q(logp)c,

where � and φ are defined in (2) and 0 < c ≤ 1/4 is some positive constant.

The condition (A2) is crucial for identifying the coefficient βj in the high-dimensional hidden
confounding model (2). Condition (A2) is referred to as the dense confounding assumption.
A few remarks are in order regarding when this identifiability condition holds.

Since all vectors �(�E)·,j , �j , �−j (�E)−j,j and φ are q-dimensional, the upper bound
condition (20) on their �2 norms is mild. If the vector φ ∈ R

q has bounded entries and the
vectors {�·,l}1≤l≤p ∈ R

q are independently generated with zero mean and bounded second
moments, then the condition (20) holds with probability larger than 1− (logp)−2c, where c is
defined in (20). A larger value c > 1/4 is possible: the condition then holds with even higher
probability, but makes the upper bounds for (32) in Lemma 1 and (35) in Lemma 2 in the
Supplementary Material [29] slightly worse, which then requires more stringent conditions
on λq(�−j ) in Theorem 1, up to polynomial order of logp.

In the factor model literature [20, 61], the spiked singular value condition λq(�) � √
p

is quite common and holds under mild conditions. The hidden confounding model is closely
related to the factor model, where the hidden confounders Hi,· are the factors and the matrix
� describes how these factors affect the observed variables Xi,·. However, for our analysis,
our assumption on λq(�−j ) in (19) can be much weaker than the classical factor assump-
tion λq(�−j ) � √

p, especially for a range of dimensionality where p � n. In certain dense
confounding settings, we can show that condition (19) holds with high probability. Consider
first the special case with a single hidden confounder, that is, q = 1 and the effect matrix is
reduced to a vector � ∈ R

p . In this case, λ1(�−j ) = ‖�−j‖2 and the denseness of the effect
vector �−j leads to a large λ1(�−j ). The condition (19) can be satisfied even if only a cer-
tain proportion of covariates is affected by hidden confounding. When q = 1, if we assume
that there exists a set A ⊆ {1,2, . . . , p} such that {�l}l∈A are i.i.d. and |A| � l(n,p, q)2,
where l(n,p, q) is defined in (19), then with high probability λq(�) �

√|A| � l(n,p, q).
In the multiple hidden confounders setting, if the vectors {�l}l∈A are generated as i.i.d. sub-
Gaussian random vectors, which has an interpretation that all covariates are analogously af-
fected by the confounders, then the spiked singular value condition (19) is satisfied with high
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probability as well. See Lemmas 4 and 5 in Section A.5 of the Supplementary Material [29]
for the exact statement. In Section 5.1, we also explore the numerical performance of the
method when different proportions of the covariates are affected and observe that the pro-
posed method works well even if the hidden confounders only affect a small percentage of
the covariates, say 5%.

Under the model (2), if the entries of � are assumed to be i.i.d. sub-Gaussian with zero
mean and variance σ 2

� , then we have λq(�−j ) � √
pσ� with high probability. Together with

(19), this requires

σ� � max
{
M

√
q

n
(logp)3/4,

√
qn logp

p
,

√
qM(logp)3/4

p1/4

}
.

So if p � qn logp and min{n,p} � q3(logp)3/2M2, then the required effect size σ� of the
hidden confounder Hi,· on an individual covariate Xi,j can diminish to zero fairly quickly.

The condition (19) can in fact be empirically checked using the sample covariance matrix
�̂X . Since �X = �ᵀ� + �E , then the condition (19) implies that �X has at least q spiked
eigenvalues. If the population covariance matrix �X has a few spikes, the corresponding
sample covariance matrix will also have spiked eigenvalue structure with a high probability
[61]. Hence, we can inspect the spectrum of the sample covariance matrix �̂X and informally
check whether it has spiked singular values. See the left panel of Figure 2 for an illustration.

The third assumption is imposed on the distribution of various terms:

(A3) The random error ei in (2) is assumed to be independent of (X
ᵀ
i,·,H

ᵀ
i,·)ᵀ, the er-

ror vector Ei,· is assumed to be independent of the hidden confounder Hi,·, and the noise
term νi,j = Ei,j − E

ᵀ
i,−j γ

E is assumed to be independent of Ei,−j . Furthermore, Ei,· is a
sub-Gaussian random vector and ei and νi,j are sub-Gaussian random variables, whose sub-
Gaussian norms satisfy max{‖Ei,·‖ψ2,‖ei‖ψ2,max1≤l≤p ‖νi,l‖2} ≤ C, where C > 0 is a pos-
itive constant independent of n and p. For 1 ≤ l ≤ p, Xi,l are sub-Gaussian random variables
whose sub-Gaussian norms satisfy max1≤l≤p ‖Xi,l‖ψ2 ≤ M , where 1 � M � √

q logp.

The independence assumption between the random error ei and (X
ᵀ
i,·,H

ᵀ
i,·)ᵀ is commonly

assumed for the SEM (1), and thus it holds in the induced hidden confounding model (2) as
well; see, for example, [51]. Analogously, when modeling Xi,· as a SEM where the hidden
variables Hi,· are directly influencing Xi,·, that is, they are parents of the Xi,·’s, the indepen-
dence of Ei,· from Hi,· is a standard assumption. The independence assumption between νi,j

and Ei,−j holds automatically if Ei,· has a multivariate Gaussian distribution (but Xi,· is still
allowed to be non-Gaussian, e.g., due to non-Gaussian confounders). Additionally, the inde-
pendence assumption between νi,j and Ei,−j holds if all elements of Ei,· are independent, but
not necessarily Gaussian. In Appendix D, we explore the robustness of our proposed doubly
debiased lasso estimator to the violation of this independence assumption; see Figure A2 for
details.

We emphasize that the individual components Xi,j are assumed to be sub-Gaussian, in-
stead of the whole vector Xi,· ∈ R

p . The sub-Gaussian norm M is allowed to grow with
q and p. Particularly, if we assume Hi,· to be a sub-Gaussian vector, then condition (20)
implies that M � √

q(logp)c‖Hi,·‖ψ2
. Furthermore, our theoretical analysis also covers the

case when the sub-Gaussian norm M is of constant order. This happens, for example, when
the entries of � are of order 1/

√
q , since M � maxl=1,...,p ‖�l‖2.

The final assumption is that the restricted eigenvalue condition [5] for the transformed
design matrices QX and P(j)X−j is satisfied with high probability.
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(A4) With probability at least 1 − exp(−cn), we have

RE
(

1

n
XᵀQ2X

)
= inf

T ⊆[p]
|T |≤k

min
ω∈Rp

‖ωT c‖1≤CM‖ωT ‖1

ωᵀ( 1
n
XᵀQ2X)ω

‖ω‖2
2

≥ τ∗;(21)

RE
(

1

n
X

ᵀ
−j

(
P(j))2

X−j

)
= inf

T ⊆[p]\{j}
|T |≤s

min
ω∈Rp−1

‖ωT c‖1≤CM‖ωT ‖1

ωᵀ( 1
n
X

ᵀ
−j (P(j))2X−j )ω

‖ω‖2
2

≥ τ∗,(22)

where c,C, τ∗ > 0 are positive constants independent of n and p and M is the sub-Gaussian
norm for components of Xi,., as defined in Assumption (A3). For ease of notation, the same
constants τ∗ and C are used in (21) and (22).

Such assumptions are common in the high-dimensional statistics literature; see [7]. The re-
stricted eigenvalue condition (A4) is similar, but more complicated than the standard re-
stricted eigenvalue condition introduced in [5]. The main complexity is that, rather than for
the original design matrix, the restricted eigenvalue condition is imposed on the transformed
design matrices P(j)X−j and QX, after applying the Trim transforms P(j) and Q, described
in detail in Sections 3.3 and 3.4, respectively. In the following, we verify the restricted eigen-
value condition (A4) for 1

n
XᵀQ2X and the argument can be extended to 1

n
X

ᵀ
−j (P(j))2X−j .

PROPOSITION 1. Suppose that assumptions (A1) and (A3) hold, Hi,· is a sub-Gaussian
random vector, q + logp � √

n and k = ‖β‖0 satisfies M2kq2 logp logn/n → 0. Assume
further that the loading matrix � ∈ R

q×p satisfies ‖�‖∞ �
√

log(qp), λ1(�)/λq(�) � 1
and that

(23) λq(�) �
√

Mp max{k1/4q5/4,1} log(np)

min{n,p}1/4 .

If λ�ρm�( 1
n
XXᵀ) ≥ c max{1,p/n} for ρ defined in (15) and some positive constant c > 0 in-

dependent of n and p, then there exist positive constants c1, c2 > 0 such that, with probability
larger than 1 − p−c2 − exp(−c2n), we have RE( 1

n
XᵀQ2X) ≥ c1λmin(�X).

An important condition for establishing Proposition 1 is the condition (23). Under the
commonly assumed spiked singular value condition λq(�) � √

p [1, 2, 20, 61], the condition
(23) is reduced to k  min{n,p}/(M2q5 log(np)4). As a comparison, for the standard high-
dimensional regression model with no hidden confounders, [53, 67] verified the restricted
eigenvalue condition under the sparsity condition k  n/ logp. That is, if λq(�) � √

p,
then the sparsity requirement in Proposition 1 is the same as that for the high-dimensional
regression model with no hidden confounders, up to a polynomial order of q and log(np),

In comparison to the condition (19) in (A2), (23) can be slightly stronger for a range of
dimensionality where p � n3/2. However, Proposition 1 does not require the strong spiked
singular value condition λq(�) � √

p. The proof of Proposition 1 is presented in Section B
in the Supplementary Material [29]. The condition λ�ρm�( 1

n
XXᵀ) ≥ c max{1,p/n} can be

empirically verified from the data. In Section B.1 in the Supplementary Material [29], further
theoretical justification for this condition is provided, under mild assumptions.

4.2. Main results. In this section, we present the most important properties of the pro-
posed estimator (10). We always consider asymptotic expressions in the limit where both
n,p → ∞ and focus on the high-dimensional regime with c∗ = limp/n ∈ (0,∞]. We men-
tion here that we also give some new results on point estimation of the initial estimator β̂ init

defined in (16) in Section A.3 in the Supplementary Material [29], as they are established
under more general conditions than in [12].
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4.2.1. Asymptotic normality. We first present the limiting distribution of the proposed
doubly debiased lasso estimator. The proof of Theorem 1 and important intermediary results
for establishing Theorem 1 are presented in Section A in the Supplementary Material [29].

THEOREM 1. Consider the hidden confounding model (2). Suppose that conditions
(A1)–(A4) hold and further assume that c∗ = limp/n ∈ (0,∞], k := ‖β‖0  √

n/(M3 ×
logp), s := ‖(�E)·,j‖0  n/(M2 logp) and ei ∼ N(0, σ 2

e ). Let the tuning parameters

for β̂ init in (16) and γ̂ in (9), respectively, be λ � σe

√
logp/n +

√
q logp/λ2

q(�) and

λj � σj

√
logp/n +

√
q logp/λ2

q(�−j ). Furthermore, let Q and P(j) be the Trim trans-
form (14) with min{ρ,ρj } ≥ (q + 1)/min{n,p − 1} and max{ρ,ρj } < 1. Then the doubly
debiased lasso estimator (10) satisfies

(24)
1√
V

(β̂j − βj )
d→ N(0,1),

where

(25) V = σ 2
e Z

ᵀ
j (P(j))4Zj

[Zᵀ
j (P(j))2Xj ]2

and V −1 σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2]

p→ 1.

REMARK 1. The Gaussianity of the random error ei is mainly imposed to simplify the
proof of asymptotic normality. We believe that this assumption is a technical condition and
can be removed by applying more refined probability arguments as in [27], where the asymp-
totic normality of quadratic forms (P(j)e)ᵀP(j)e is established for the general sub-Gaussian
case. The argument could be extended to obtain the asymptotic normality for (P(j)ηj )

ᵀP(j)e,
which is essentially needed for the current result.

REMARK 2. For constructing Q and P(j), the main requirement is to trim the singular
values enough in both cases, that is, min{ρ,ρj } ≥ (q + 1)/min{n,p − 1}. This condition is
mild in the high-dimensional setting with a small number of hidden confounders. Our results
are not limited to the proposed estimator which uses the Trim transform P(j) in (14) and the
penalized estimators γ̂ and β̂ init in (9) and (16), but hold for any transformation satisfying the
conditions given in Section A.1 of the Supplementary Material [29] and any initial estimator
satisfying the error rates presented in Section A.3 of the Supplementary Material [29].

REMARK 3. If we further assume the error εi in the model (3) to be independent of Xi,·,
then the requirement (19) of the condition (A2) can be relaxed to

λq(�−j ) � max
{
M

√
qp

n
(logp)3/4,

√
qMp1/4(logp)3/8,

√(
sM2 + k

√
nM3

)
q logp

}
.

Note that the factor model implies the upper bound λq(�−j ) �
√

p. Even if n ≥ p, the
above condition on λq(�−j ) can still hold if p � kqM3 logp

√
n. On the other hand, the

condition (19) together with λq(�−j ) �
√

p imply that p � qn logp, which excludes the
setting n ≥ p.

There are three conditions on the parameters s, q , k imposed in the Theorem 1 above.
The most stringent one is the sparsity assumption k  √

n/[M3 logp]. In standard high-
dimensional sparse linear regression, a related sparsity assumption k  √

n/ logp has also
been used for confidence interval construction [34, 58, 66] and has been established in [10] as
a necessary condition for constructing adaptive confidence intervals. In the high-dimensional
hidden confounding model with M � 1, the condition on the sparsity of β is then of the same
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asymptotic order as in the standard high-dimensional regression with no hidden confounding.
The condition on the sparsity of the precision matrix, s = ‖(�E)·,j‖0  n/(M2logp), is mild
in the sense that, for M � 1, it is the maximal sparsity level for identifying (�E)·,j . Implied
by (19), the condition that the number of hidden confounders q is small is fundamental for
all reasonable factor or confounding models.

4.2.2. Efficiency. We investigate now the dependence of the asymptotic variance V in
(25) on the choice of the spectral transformation P(j). We further show that the proposed
doubly debiased lasso estimator (10) is efficient in the Gauss–Markov sense, with a careful
construction of the transformation P(j).

The Gauss–Markov theorem states that the smallest variance of any unbiased linear esti-
mator of βj in the standard low-dimensional regression setting (with no hidden confounding)
is σ 2

e /(nσ 2
j ), which we use as a benchmark. The corresponding discussion on efficiency of

the standard high-dimensional regression can be found in Section 2.3.3 of [58]. The expres-

sion for the asymptotic variance V of our proposed estimator (10) is given by σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2]

(see Theorem 1). For the Trim transform defined in (14), which trims top (100ρj )% of the
singular values, we have that

σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2] = σ 2

e

σ 2
j

·
∑m

l=1 S4
l,l

(
∑m

l=1 S2
l,l)

2
,

where we write m = min{n,p − 1} and Sl,l = Sl,l(X−j ) ∈ [0,1]. Since S4
l,l ≤ S2

l,l for every l,∑m
l=1 S2

l,l ≥ (1 − ρj )m and (
∑m

l=1 S2
l,l)

2 ≤ m ·∑m
l=1 S4

l,l , we obtain

σ 2
e

σ 2
j m

≤ σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2] ≤ 1

1 − ρj

· σ 2
e

σ 2
j m

.

In the high-dimensional setting where p − 1 ≥ n, we have m = n and then

(26)
σ 2

e

σ 2
j n

≤ σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2] ≤ 1

1 − ρj

· σ 2
e

σ 2
j n

.

THEOREM 2. Suppose that the assumptions of Theorem 1 hold. If p ≥ n + 1 and ρj =
ρj (n) → 0, then the doubly debiased lasso estimator in (10) has asymptotic variance σ 2

e

σ 2
j n

,

that is, it achieves the Gauss–Markov efficiency bound.

The above theorem shows that in the q  n regime, the doubly debiased lasso achieves
the Gauss–Markov efficiency bound if ρj = ρj (n) → 0 and min{ρ,ρj } ≥ (q + 1)/n (which
is also a condition of Theorem 1). When using the median Trim transform, that is, ρj = 1/2,
the bound in (26) implies that the variance of the resulting estimator is at most twice the size
of the Gauss–Markov bound. In Section 5, we illustrate the finite-sample performance of the
doubly debiased lasso estimator for different values of ρj ; see Figure 6.

In general for the high-dimensional setting p/n → c∗ ∈ (0,∞], the Asymptotic Relative
Efficiency (ARE) of the proposed doubly debiased lasso estimator with respect to the Gauss–
Markov efficiency bound satisfies the following:

(27) ARE ∈
[

1

min{c∗,1} ,
1

(1 − ρ∗)min{c∗,1}
]
,

where ρ∗ = limn→∞ ρj (n) ∈ [0,1). The equation (27) reveals how the efficiency of the dou-
bly debiased lasso is affected by the choice of the percentile ρj = ρj (n) in transformation
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FIG. 1. The plot of ARE versus c∗ = limp/n, for the setting of ρ∗ = 0.

P(j) and the dimensionality of the problem. Smaller ρj leads to a more efficient estimator,
as long as the top few singular values are properly shrunk. Intuitively, a smaller percentile
ρj means that less information in X−j is trimmed out, and hence the proposed estimator is
more efficient. In addition, for the case ρ∗ = 0, we have ARE = max{1/c∗,1}. With ρ∗ = 0,
a plot of ARE with respect to the ratio c∗ = limp/n is given in Figure 1. We see that for
c∗ < 1 (i.e., p < n), the relative efficiency of the proposed estimator increases as the dimen-
sion p increases and when c∗ ≥ 1 (i.e., p ≥ n), we have that ARE = 1, saying that the doubly
debiased lasso achieves the efficiency bound in the Gauss–Markov sense.

The phenomenon that the efficiency is retained even in presence of hidden confounding
is quite remarkable. For comparison, even in the classical low-dimensional setting, the most
commonly used approach assumes availability of sufficiently many instrumental variables
(IV) satisfying certain stringent conditions under which one can consistently estimate the ef-
fects in presence of hidden confounding. In Theorem 5.2 of [64], the popular IV estimator,
two-stage-least-squares (2SLS), is shown to have variance strictly larger than the efficiency
bound in the Gauss–Markov setting (with no unmeasured confounding). It has been also
shown in Theorem 5.3 of [64] that the 2SLS estimator is efficient in the class of all lin-
ear instrumental variable estimators, and thus all linear instrumental variable estimators are
strictly less efficient than our doubly debiased lasso. On the other hand, our proposed method
not only avoids the difficult step of coming up with a large number of valid instrumental
variables, but also achieves the efficiency bound with a careful construction of the spectral
transformation P(j). This occurs due to a blessing of dimensionality and the assumption of
dense confounding, where a large number of covariates are assumed to be affected by a small
number of hidden confounders.

4.2.3. Asymptotic validity of confidence intervals. The asymptotic normal limiting distri-
bution in Theorem 1 can be used for construction of confidence intervals for βj . Consistently
estimating the variance V of our estimator, defined in (25), requires a consistent estimator of
the error variance σ 2

e . The following proposition establishes the rate of convergence of the
estimator σ̂ 2

e proposed in (17).

PROPOSITION 2. Consider the hidden confounding model (2). Suppose that condi-
tions (A1)–(A4) hold. Suppose further that c∗ = limp/n ∈ (0,∞], k � n/ logp and q 
min{n,p/ logp}. Then with probability larger than 1− exp(−ct2)− 1

t2 − c(logp)−1/2 −n−c
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for some positive constant c > 0 and for any 0 < t ≤ √
n, we have

∣∣σ̂ 2
e − σ 2

e

∣∣� t√
n

+ M2k
logp

n
+ q logp

p
+ pq

√
logp/n + M2kq logp

λ2
q(�)

,

where M is the sub-Gaussian norm for components of Xi,. defined in Assumption (A3).

Together with (19) of the condition (A2), we apply the above proposition and establish

σ̂ 2
e − σ 2

e

p→ 0. As a remark, the estimation error |σ̂ 2
e − σ 2

ε | is of the same order of magnitude
as |σ̂ 2

e − σ 2
e | since the difference σ 2

ε − σ 2
e is small in the dense confounding model; see

Lemma 2 in the Supplementary Material [29].
Proposition 2, together with Theorem 1, imply the asymptotic coverage and precision prop-

erties of the proposed confidence interval CI(βj ), described in (13).

COROLLARY 1. Suppose that the conditions of Theorem 1 hold, then the confidence
interval defined in (13) satisfies the following properties:

lim inf
n,p→∞P

(
βj ∈ CI(βj )

) ≥ 1 − α,(28)

lim sup
n,p→∞

P

(
L
(
CI(βj )

) ≥ (2 + c)z1− α
2

√√√√ σ 2
e Tr[(P(j))4]

σ 2
j Tr2[(P(j))2]

)
= 0,(29)

for any positive constant c > 0, where L(CI(βj )) denotes the length of the proposed confi-
dence interval.

Similar to the efficiency results in Section 4.2.2, the exact length depends on the construc-
tion of the spectral transformation P(j). Together with (26), the above proposition shows
that the length of constructed confidence interval is shrinking at the rate of n−1/2 for the
Trim transform in the high-dimensional setting. Specifically, for the setting p ≥ n + 1, if
we choose ρj = ρj (n) ≥ (q + 1)/n and ρj (n) → 0, the constructed confidence interval has
asymptotically optimal length.

5. Empirical results. In this section, we consider the practical aspects of doubly debi-
ased lasso methodology and illustrate its empirical performance on both real and simulated
data. The overview of the method and the tuning parameters selection can be found in Sec-
tion 3.6.

In order to investigate whether the given data set is potentially confounded, one can inspect
the principal components of the design matrix X, or equivalently consider its SVD. Spiked
singular value structure (see Figure 2) indicates the existence of hidden confounding, as much
of the variance of our data can be explained by a small number of latent factors. This also
serves as an informal check of the spiked singular value condition in the assumption (A2).

The scree plot can also be used for choosing the trimming thresholds, if one wants to
depart from the default median rule (see Section 3.6). We have seen from the theoretical con-
siderations in Section 4 that we can reduce the estimator variance by decreasing the trimming
thresholds for the spectral transformation P(j). On the other hand, it is crucial to choose them
so that the number of shrunk singular values is still sufficiently large compared to the number
of confounders. However, exactly estimating the number of confounders, for example, by de-
tecting the elbow in the scree plot [61], is not necessary with our method, since the efficiency
of our estimator decreases relatively slowly as we decrease the trimming threshold.

In what follows, we illustrate the empirical performance of the doubly debiased lasso in
practice. We compare the performance with the standard debiased lasso [66], even though it
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FIG. 2. Left: Spiked singular values of the standardized gene expression matrix (see Section 5.2) indicate possi-
ble confounding. Right: Singular values after regressing out the q = 65 confounding proxies given in the data set
(thus labeled as “unconfounded”). The singular values in both plots are sorted decreasingly.

is not really a competitor for dealing with hidden confounding. Our goal is to illustrate and
quantify the error and bias when using the naive and popular approach, which ignores po-
tential hidden confounding. We first investigate the performance of our method on simulated
data for a range of data generating mechanisms and then investigate its behavior on a gene
expression data set from the GTEx project [44].

5.1. Simulations. In this section, we compare the doubly debiased lasso with the standard
debiased lasso in several different simulation settings for estimation of βj and construction
of the corresponding confidence intervals.

In order to make comparisons with the standard debiased lasso as fair as possible, we
use the same procedure for constructing the standard debiased lasso, but with Q = Ip ,
P(j) = Ip−1, whereas for the doubly debiased lasso, P(j), Q are taken to be median Trim
transform matrices, unless specified otherwise. Finally, to investigate the usefulness of dou-
ble debiasing, we additionally include the standard debiased lasso estimator with the same
initial estimator β̂ init as our proposed method; see Section 3.4. Therefore, this corresponds to
the case where Q is the median Trim transform, whereas P(j) = Ip−1.

We will compare the (scaled) bias and variance of the corresponding estimators. For a
fixed index j , from the equation (11) we have

V −1/2(β̂j − βj ) = N(0,1) + Bβ + Bb,

where the estimator variance V is defined in (25) and the bias terms Bβ and Bb are given by

Bβ = V −1/2
Z
ᵀ
j (P(j))2X−j (β̂

init−j − β−j )

Z
ᵀ
j (P(j))2Xj

, Bb = V −1/2
Z
ᵀ
j (P(j))2Xb

Z
ᵀ
j (P(j))2Xj

.

Larger estimator variance makes the confidence intervals wider. However, large bias makes
the confidence intervals inaccurate. We quantify this with the scaled bias terms Bβ , which
is due to the error in estimation of β , and Bb, which is due to the perturbation b arising
from the hidden confounding. Having small |Bβ | and |Bb| is essential for having a cor-
rect coverage, since the construction of confidence intervals is based on the approximation
V −1/2(β̂j −βj ) ≈ N(0,1). We investigate the validity of the confidence interval construction
by measuring the coverage of the nominal 95% confidence interval. We present here a wide
range of simulations settings and further simulations can be found in the Appendix D.
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Simulation parameters. Unless specified otherwise, in all simulations we fix q = 3, s =
5 and β = (1,1,1,1,1,0, . . . ,0)ᵀ and we target the coefficient β1 = 1. The rows of the
unconfounded design matrix E are generated from N(0,�E) distribution, where �E = Ip ,
as a default. The matrix of confounding variables H , the additive error e and the coefficient
matrices � and φ all have i.i.d. N(0,1) entries, unless stated otherwise. Each simulation is
averaged over 5,000 independent repetitions.

Varying dimensions n and p. In this simulation setting, we investigate how the performance
of our estimator depends on the dimensionality of the problem. The results can be seen in
Figure 3. In the first scenario, shown in the top row, we have p = 500 and n varying from
50 to 2,000, thus covering both low-dimensional and high-dimensional cases. In the second
scenario, shown in the bottom row, the sample size is fixed at n = 500 and the number of
covariates p varies from 100 to 2,000. We provide analogous simulations in Appendix D,
where both the random variables and the model parameters are generated from non-Gaussian
distributions.

We see that the absolute bias term |Bb| due to confounding is substantially smaller for the
doubly debiased lasso compared to the standard debiased lasso, regardless of which initial
estimator is used. This is because P(j) additionally removes bias by shrinking large principal
components of X−j . This spectral transformation helps also to make the absolute bias term
|Bβ | smaller for the doubly debiased lasso compared to the debiased lasso, even when using
the same initial estimator β̂ init. This comes however at the expense of slightly larger variance,
but we can see that the decrease in bias reflects positively on the validity of the constructed
confidence intervals. Their coverage is significantly more accurate for the doubly debiased
lasso, over a large range of n and p.

There are two challenging regimes for estimation under confounding. First, when the di-
mension p is much larger than the sample size n, the coverage can be lower than 95%, since

FIG. 3. (Varying dimensions) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left), standard

deviation V 1/2 (middle) and the coverage of the 95% confidence interval (right) on the number of data points n

(top row) and the number of covariates p (bottom row). On the left side, |Bβ | and |Bb| are denoted by a dashed
and a solid line, respectively. In the top row, we fix p = 500, whereas in the bottom row, we have n = 500. Blue
color corresponds to the doubly debiased lasso, red color represents the standard debiased lasso and green color
corresponds also to the debiased lasso estimator, but with the same β̂init as our proposed method. Note that the
last two methods have almost indistinguishable |Bb| and V .
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in this regime it is difficult to estimate β accurately, and thus the term |Bβ | is fairly large,
even after the bias correction step. We see that the absolute bias |Bβ | grows with p, but it is
much smaller for the doubly debiased lasso, which positively impacts the coverage. Second,
in the regime where p is relatively small compared to n, |Bb| begins to dominate and leads
to undercoverage of confidence intervals. Bb is caused by the hidden confounding and does
not disappear when n → ∞, while keeping p constant. The simulation results agree with
the asymptotic analysis of the bias term in (52) in the Supplementary Material [29], where
the term |Bb| vanishes as λq(�) increases, in addition to increasing the sample size n. In the
regime considered in this simulation, |Bb| can even grow, since the bias becomes increasingly
large compared to the estimator’s variance. However, it is important to note that even in these
difficult regimes, the doubly debiased lasso performs significantly better than the standard
debiased lasso (irrespective of the initial estimator) as it manages to additionally decrease the
estimator’s bias.

Toeplitz covariance structure for �E . Now we fix n = 300, p = 1,000, but we generate
the covariance matrix �E of the unconfounded part of the design matrix X to have Toeplitz
covariance structure: (�E)i,j = κ |i−j |, where we vary κ across the interval [0,0.97]. As we
increase κ , the covariates X1, . . . ,X5 in the active set get more correlated, so it gets harder
to distinguish their effects on the response and, therefore, to estimate β . Similarly, it gets as
well harder to estimate γ in the regression of Xj on X−j , since Xj can be explained well
by many linear combinations of the other covariates that are correlated with Xj . In Figure 4,
we can see that the doubly debiased lasso is much less affected by correlated covariates. The
(scaled) absolute bias terms |Bb| and |Bβ | are much larger for standard debiased lasso, which
causes the coverage to worsen significantly for values of κ that are closer to 1.

Proportion of confounded covariates. In order to investigate how the confounding dense-
ness affects the performance of our method, we now again fix n = 300 and p = 1,000, but
we change the proportion of covariates Xi that are affected by each confounding variable. We
do this by setting to zero a desired proportion of entries in each row of the matrix � ∈R

q×p ,
which describes the effect of the confounding variables on each predictor. Its nonzero en-
tries are still generated as N(0,1). We set once again �E = Ip and we vary the proportion
of nonzero entries of � from 5% to 100%. The results can be seen in Figure 5. We can see
that the doubly debiased lasso performs well even when only a very small number (5%) of
the covariates are affected by the confounding variables, which agrees with our theoretical
discussion for assumption (A2). We can also see that the coverage of the standard debiased
lasso is poor even for a small number of affected variables and it worsens as the confounding

FIG. 4. (Toeplitz covariance for �E ) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left),

standard deviation V 1/2 (middle) and the coverage of the 95% confidence interval (right) on the parameter κ

of the Toeplitz covariance structure. n = 300 and p = 1,000 are fixed. On the leftmost plot, |Bβ | and |Bb| are
denoted by a dashed and a solid line, respectively. Blue color corresponds to the doubly debiased lasso, red color
represents the standard debiased lasso and green color corresponds also to the debiased lasso estimator, but with
the same β̂init as our proposed method. Note that the last two methods have almost indistinguishable |Bb| and V .
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FIG. 5. (Proportion confounded) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left), standard

deviation V 1/2 (middle) and the coverage of the 95% confidence interval (right) on proportion of confounded
covariates. n = 300 and p = 1,000 are fixed. On the leftmost plot, |Bβ | and |Bb| are denoted by a dashed and
a solid line, respectively. Blue color corresponds to the doubly debiased lasso, red color represents the standard
debiased lasso and green color corresponds also to the debiased lasso estimator, but with the same β̂init as our
proposed method. Note that the last two methods have almost indistinguishable |Bb| and V .

variables affect more and more covariates. The coverage improves to some extent when we
use a better initial estimator, but is still worse than our proposed method.

In Appendix D, we also show how the performance changes with the strength of confound-
ing, by gradually decreasing the size of the entries of the loading matrix � .

Trimming level. We investigate here the dependence of the performance on the choice of the
trimming threshold for the Trim transform (14), parametrized by the proportion of singular
values ρj , which we shrink. The spectral transformation Q used for the initial estimator β̂ init

is fixed to be the default choice of Trim transform with median rule. We fix n = 300 and
p = 1,000 and consider the same setup as in Figure 3. We take τ = �ρjm�,�ρjm� to be the
ρj -quantile of the set of singular values of the design matrix X, where we vary ρj across
the interval [0,0.9]. When ρj = 0, τ is the maximal singular value, so there is no shrinkage
and our estimator reduces to the standard debiased lasso (with the initial estimator β̂ init). The
results are displayed in Figure 6. We can see that doubly debiased lasso is quite insensitive
to the trimming level, as long as the number of shrunken singular values is large enough
compared to the number of confounding variables q . In the simulation q = 3 and the (scaled)
absolute bias terms |Bb| and |Bβ | are still small when ρj ≈ 0.02, corresponding to shrinking
6 largest singular values. We see that the standard deviation decreases as ρj decreases, that
is, as the trimming level τ increases, which matches our efficiency analysis in Section 4.2.1.
However, we see that the default choice τ = �m/2�,�m/2� has decent performance as well. In
Appendix D, we also explore whether the choice of spectral transformation significantly af-

FIG. 6. (Trimming level) Dependence of the (scaled) absolyte bias terms |Bβ | and |Bb| (left), standard deviation

V 1/2 (middle) and the coverage of the 95% confidence interval (right) on the trimming level ρj of the Trim
transform (see equation (14)). The sample size is fixed at n = 300 and the dimension at p = 1,000. On the
leftmost plot, |Bβ | and |Bb| are denoted by a dashed and a solid line, respectively. The case ρj = 0 corresponds

to debiased lasso with the spectral deconfounding initial estimator β̂init, described in (16).
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fects the performance, with a focus on the PCA adjustment, which maps first several singular
values to 0, while keeping the others intact.

No confounding bias. We consider now the same simulation setting as in Figure 3, where
we fix n = 500 and vary p, but where in addition we remove the effect of the perturbation
b that arises due to the confounding. We generate from the model (2), but then adjust for
the confounding bias: Y ← (Y − Xb), where b is the induced coefficient perturbation, as in
equation (3). In this way, we still have a perturbed linear model, but where we have enforced
b = 0 while keeping the same spiked covariance structure of X: �X = �E + �ᵀ� as in
(2). The results can be seen in the top row of Figure 7. We see that doubly debiased lasso
still has smaller absolute bias |Bβ |, slightly higher variance and better coverage than the
standard debiased lasso, even in absence of confounding. The bias term Bb equals 0, since
we have put b = 0. We can even observe a decrease in estimation bias for large p, and thus
an improvement in the confidence interval coverage. This is due to the fact that X has a
spiked covariance structure and trimming the large singular values reduces the correlations
between the predictors. This phenomenon is also illustrated in the additional simulations
in the Appendix D, where we set q = 0 and put E to have either Toeplitz or equicorrelation
covariance structure with varying degree of spikiness (by varying the correlation parameters).

In the bottom row of Figure 7, we repeat the same simulation, but where we set q = 0 and
take �X = �E = I in order to investigate the performance of the method in the setting with-
out confounding, but where the covariance matrix of the predictors is not spiked. We see that
there is not much difference in the bias and only a slight increase in the variance of our esti-
mator and thus also there is not much difference in the coverage of the confidence intervals.
We conclude that our method can provide certain robustness against dense confounding: if
there is such confounding, our proposed method is able to significantly reduce the bias caused
by it; on the other hand, if there is no confounding, in comparison to the standard debiased

FIG. 7. (No confounding bias) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left), standard

deviation V 1/2 (middle) and the coverage of the 95% confidence interval (right) on the number of covariates
p, while keeping n = 500 fixed. In the plots on the left, |Bβ | and |Bb| are denoted by a dashed and a solid
line, respectively, but Bb = 0 since we have enforced b = 0. Top row corresponds to the spiked covariance case
�X = �T � +I , whereas for the bottom row we set �X = I . Blue color corresponds to the doubly debiased lasso,
red color represents the standard debiased lasso and green color corresponds also to the debiased lasso estimator,
but with the same β̂init as our proposed method. Note that the last two methods have almost indistinguishable V .
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FIG. 8. (Measurement error) Dependence of the (scaled) absolute bias terms |Bβ | and |Bb| (left), standard

deviation V 1/2 (middle) and the coverage of the 95% confidence interval (right) on the number of covariates p

in the measurement error model (4). The sample size is fixed at n = 500. On the leftmost plot, |Bβ | and |Bb| are
denoted by a dashed and a solid line, respectively. Blue color corresponds to the doubly debiased lasso, red color
represents the standard Debiased Lasso and green color corresponds also to the debiased lasso estimator, but
with the same β̂init as our proposed method. Note that the last two methods have almost indistinguishable |Bb|
and V .

lasso, our proposed method still has essentially as good performance, with a small increase
in variance.

Measurement error. We now generate from the measurement error model (4), which can be
viewed as a special case of our model (2). The measurement error W = �ᵀH is generated
by q = 3 latent variables Hi,· ∈ R

q for 1 ≤ i ≤ n. We fix the number of data points to be
n = 500 and vary the number of covariates p from 50 to 1,000, as in Figure 3. The results
are displayed in Figure 8, where we can see a similar pattern as before: The doubly debiased
lasso decreases the bias at the expense of a slightly inflated variance, which in turn makes the
inference much more accurate and the confidence intervals have significantly better coverage.

5.2. Real data. We investigate here the performance of doubly debiased lasso (with a
default trimming level of 50%) on a genomic data set. The data are obtained from the GTEx
project [44], where the gene expression has been measured postmortem on samples coming
from various tissue types. For our purposes, we use fully processed and normalized gene
expression data for the skeletal muscle tissue. The gene expression matrix X consists of
measurements of expressions of p = 12,646 protein-coding genes for n = 706 individuals.
Genomic data sets are particularly prone to confounding [23, 25, 42], and for our analysis
we are provided with q = 65 proxies for hidden confounding, computed with genotyping
principal components and PEER factors.

We investigate the associations between the expressions of different genes by regressing
one target gene expression Xi on the expression of other genes X−i . Since the expression of
many genes is very correlated, researchers often use just ∼ 1,000 carefully chosen landmark
genes as representatives of the whole gene expression [56]. We will use several such landmark
genes as the responses in our analysis.

In Figure 9, we can see a comparison of 95%-confidence intervals that are obtained from
the doubly debiased lasso and standard debiased lasso. For a fixed response, landmark gene
Xi , we choose 25 predictor genes Xj where j �= i such that their corresponding coefficients
of the lasso estimator for regressing Xi on X−i are nonzero. The covariates are ordered
according to decreasing absolute values of their estimated lasso coefficients. We notice that
the confidence intervals follow a similar pattern, but that the doubly debiased lasso, besides
removing bias due to confounding, is more conservative as the resulting confidence intervals
are wider.

This behavior becomes even more apparent in Figure 10, where we compare all p-values
for a fixed response landmark gene. We see that doubly debiased lasso is more conservative
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FIG. 9. Comparison of 95% confidence intervals obtained by the doubly debiased lasso (blue) and doubly
debiased lasso (red) for regression of the expression of one target landmark gene on the other gene expressions.

and it declares significantly less covariates significant than the standard debiased lasso. Even
though the p-values of the two methods are correlated (see also Figure 12), we see that it can
happen that one method declares a predictor significant, whereas the other does not.

Robustness against hidden confounding. We now adjust the data matrix X by regressing
out the q = 65 provided hidden confounding proxies. By regressing out these covariates, we
obtain an estimate of the unconfounded gene expression matrix X̃. We compare the estimates
for the original gene expression matrix with the estimates obtained from the adjusted matrix.

For a fixed response landmark gene expression Xi , we can determine significance of the
predictor genes by considering the p-values. One can perform variable screening by consid-
ering the set of most significant genes. For the doubly debiased lasso and the standard lasso,
we compare the sets of most significant variables determined from the gene expression ma-
trix X and the deconfounded matrix X̃. The difference of the chosen sets is measured by the
Jaccard distance. A larger Jaccard distance indicates a larger difference between the chosen
sets. The results can be seen in Figure 11. The results are averaged over 10 different response
landmark genes. We see that the doubly debiased lasso gives more similar sets for the large
model size, indicating that the analysis conclusions obtained by using the doubly debiased
lasso are more robust in presence of confounding variables. However, for small model size

FIG. 10. Comparison of p-values for two-sided test of the hypothesis βj = 0, obtained by doubly debiased
lasso (red) and doubly debiased lasso (blue) for regression of the expression of one target gene on the other gene
expressions. The covariates are ordered by decreasing significance, either estimated by the debiased lasso (left)
or by the doubly debiased lasso (right). Black dotted line indicates the 5% significance level.
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FIG. 11. Comparison of the sets of the most significant covariates chosen based on the original expression
matrix X and the deconfounded gene expression matrix X̃, for different cardinalities of the sets (model size).
The set differences are measured by Jaccard distance. Red line represents the standard debiased lasso method,
whereas the blue and green lines denote the doubly debiased lasso that uses ρ = 0.5 and ρ = 0.1 for obtaining
the trimming threshold, respectively; see equation (14).

we do not see large gains. In this case, the sets produced by any method are quite different,
that is, the Jaccard distance is very large. This indicates that the problem of determining the
most significant covariates is quite difficult, since X and X̃ differ a lot.

In Figure 12, we can see the relationship between the p-values obtained by the doubly
debiased lasso and the standard debiased lasso for the original gene expression matrix X

and the deconfounded matrix X̃. The p-values are aggregated over 10 response landmark
genes and are computed for all possible predictor genes. We can see from the left plot that
the doubly debiased lasso is much more conservative for the confounded data. The cloud
of points is skewed upwards showing that the standard debiased lasso declares many more
covariates significant in presence of the hidden confounding. On the other hand, in the right
plot we can see that the p-values obtained by the two methods are much more similar for the
unconfounded data and the point cloud is significantly less skewed upwards. The remaining
deviation from the y = x line might be due to the remaining confounding, not accounted for
by regressing out the given confounder proxies.

FIG. 12. Comparison of p-values for two-sided test of the hypothesis βj = 0, obtained by doubly debiased lasso
and standard debiased lasso for regression of the expression of one target gene on the other gene expressions. The
points are aggregated over 10 landmark response genes. The p-values are either determined using the original
gene expression matrix (left) or the matrix where we have regressed out the given q = 65 confounding proxies
(right). Horizontal and vertical black dashed lines indicate the 5% significance level.
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6. Discussion. We propose the doubly debiased lasso estimator for hypothesis testing
and confidence interval construction for single regression coefficients in high-dimensional
settings with “dense” confounding. We present theoretical and empirical justifications and
argue that our double debiasing leads to robustness against hidden confounding. In case of
no confounding, the price to be paid is (typically) small, with a small increase in variance
but even a decrease in estimation bias, in comparison to the standard debiased lasso [66]; but
there can be substantial gain when “dense” confounding is present.

It is ambitious to claim significance based on observational data. One always needs to
make additional assumptions to guard against confounding. We believe that our robust doubly
debiased lasso is a clear improvement over the use of standard inferential high-dimensional
techniques, yet it is simple and easy to implement, requiring two additional SVDs only, with
no additional tuning parameters when using our default choice of trimming ρ = ρj = 50% of
the singular values in equations (14) and (15).
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