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Eidgenössische Technische Hochschule (ETH)

CH-8092 Zürich
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Abstract

We consider the model selection problem in the class of stationary variable length
Markov chains (VLMC) on a finite space. The processes in this class are still Marko-
vian of higher order, but with memory of variable length.

Various aims in selecting a VLMC can be formalized with different non-equivalent
risks, such as final prediction error or expected Kullback-Leibler information. We
consider the asymptotic behavior of different risk functions and show how they can
be generally estimated with the same resampling strategy. Such estimated risks then
yield new model selection rules: in the special case of classical higher order full Markov
chains we obtain a better proposal than the AIC criterion, which has been suggested
in the past.

Attacking the model selection problem also yields a proposal for tuning Rissanen’s
context algorithm, which can be used for estimating the minimal state space and in
turn the whole probability structure of a VLMC.

Key words and phrases. Bootstrap, zero-one loss, final prediction error, Kullback-Leibler in-
formation, L2 loss, optimal tree pruning, resampling.

Short title: Selecting variable length Markov chains
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1 Introduction

We consider the model selection problem in the class of stationary variable length Markov
chains (VLMC) on a finite space X. The processes in this class are still Markovian of
higher order, but their memory can have variable length. With a variable length memory,
the minimal state space becomes smaller and unlike full high order Markov chains with
fixed memory-length, the process is not heavily exposed to the curse of dimensionality.
VLMC’s are particularly attractive when there is long memory in certain ‘directions’.

Estimation of the minimal state space and the probability distribution of a VLMC
can be done with the tree structured context algorithm (Rissanen, 1983). This algorithm
is consistent in very general situations, cf. Bühlmann and Wyner (1997). Moreover, it
is known to be efficient in the sense of predictive coding, cf. Weinberger et al. (1995),
and also in the statistical sense for estimating a smooth functional, cf. Bühlmann (1997).
Successful applications of the context algorithm have been reported among others by
Rissanen (1994) for modeling chaotic processes and by Weinberger et al. (1996) for data
compression.

The model selection problem in the class of VLMC’s is not well understood. Even for
the classic full Markov chains of higher order the model selection problem has not been
considered in more rigorous details. For estimation of the order of a full Markov chain,
Tong (1975) has proposed the AIC criterion which should aim to minimize an expected
Kullback-Leibler information. This proposal can be improved: our strategy of selecting
a VLMC model is also a better proposal in the special case of order selection in classical
full Markov chains. We study here the selection of a VLMC under different risk functions,
such as final prediction error with the quadratic and the zero-one loss and the expected
Kullback-Leibler information. The risks are not equivalent, by specifying a certain risk
function we can tailor the model selection problem towards specific aims. The estimation of
the various risks can be done consistently with a resampling scheme. As mentioned above
in connection with order selection for full Markov chains, our method is not equivalent
to the AIC criterion, even when using the expected Kullback-Leibler information as risk
function.

To use the context algorithm mentioned above for fitting VLMC’s one needs to choose
a tuning parameter, the so-called cut-off. So far, this problem of tuning has not received
any systematic attention. We discuss the relation of choosing the cut-off to model selection
and so-called optimal tree pruning. Similar to selecting a model, we propose a resampling
technique for estimating an optimal cut-off. The optimality of the cut-off is with respect
to a chosen risk function, as in the model selection problem.

In section 2 we define the VLMC’s and describe the context algorithm, in section 3 we
show the behavior of different risks as a function of different estimated VLMC’s, in section
4 we show how estimation of these risks can be done via resampling and discuss the tuning
of the cut-off parameter for the context algorithm, in section 5 we present results from a
simulation study, section 6 outlines some conclusions and in section 7 we give the proofs.

2 Variable length Markov Chains

In the sequel, we denote by xji = xj , xj−1, . . . , xi (i < j, i, j ∈ Z ∪ {−∞,∞}) a string
written in reverse ‘time’. We usually denote by capital letters X random variables and
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by small letters x fixed deterministic values. We follow here the ideas of Weinberger et
al. (1995) and define what we call a variable length Markov chain (VLMC). As a starting
point, consider (Xt)t∈Z, being a stationary Markov chain of finite order k with values in a
finite space X. Thus,

P[X1 = x1|X0
−∞ = x0

−∞] = P[X1 = x1|X0
−k+1 = x0

−k+1], for all x1
−∞. (2.1)

Such full Markov chains are very hard to estimate since they involve |X|k(|X| − 1) free
parameters. To get less complex models, the idea is to lump irrelevant states in the history
X0
−k+1 in formula (2.1) together, resulting in a sparse Markov chain.

For a time point t ∈ Z, maybe only some values from the infinite history Xt−1
−∞ of the

variable Xt are relevant. This relevant history can be thought as a context for the actual
variable Xt. To achieve a flexible model class, ranging from some type of sparse to full
Markov chains, we let the length of a context depend on the actual values Xt−1

−∞. For
example, we might have for the variable Xt a context of length 1 and for Xt′ (t′ 6= t) a
context of length 5. We can formalize this as follows.

Definition 2.1 Let (Xt)t∈Z be a stationary process with values Xt ∈ X, |X| <∞. Denote
by c : X∞ → X∞ a (variable projection) function which maps

c : x0
−∞ 7→ x0

−`+1, where ` is defined by
` = min{k;P[X1 = x1|X0

−∞ = x0
−∞] = P[X1 = x1|X0

−k+1 = x0
−k+1] for all x1 ∈ X}

(` = 0 corresponds to independence).

Then, c(.) is called a context function and for any t ∈ Z, c(xt−1
−∞) is called the context for

the variable xt.

The name context refers to the portion of the past that influences the next outcome. By the
projection structure of the context function c(.), the context-length `(.) = |c(.)| determines
c(.) and vice-versa. The definition of ` implicitly reflects the fact that the context-length
of a variable xt is ` = |c(xt−1

−∞)| = `(xt−1
−∞), depending on the history xt−1

−∞.

Definition 2.2 Let (Xt)t∈Z be a stationary process with values Xt ∈ X, |X| < ∞ and
corresponding context function c(.) as given in Definition 2.1. Let 0 ≤ k ≤ ∞ be the
smallest integer such that

|c(x0
−∞)| = `(x0

−∞) ≤ k for all x0
−∞ ∈ X∞.

Then c(.) is called a context function of order k, and (Xt)t∈Z is called a stationary variable
length Markov chain (VLMC) of order k. We always identify (Xt)t∈Z with its probability
distribution Pc on X∞.

Clearly, a VLMC of order k is a Markov chain of order k, now having a memory of variable
length `. By requiring stationarity, a VLMC is thus completely specified by its transition
probabilities,

p(x1|c(x0
−∞)) = PPc [X1 = x1|c(X0

−∞) = c(x0
−∞)], x1

−∞ ∈ X∞.

In retrospect, we could define a context function c(.) : Xk → Xk, since there is no func-
tional dependence of the function c(x0

−∞) on a variable x−k+1−m (m > 0). We sometimes
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use the definition on X∞ and sometimes on Xk. The context function projects the k-th (or
infinite) order history x0

−k+1 into Xk. Often the range space of the context function c(.) is
not the full space Xk, but also not the empty space. If the context function c(.) of order
k is the full projection x0

−k+1 7→ x0
−k+1 for all x0

−k+1, the VLMC is a full Markov chain of
order k. The class of context functions of length k is rich enough to obtain a broad class
of Markov chains, including special sparse types given by the notion of a short context. In
particular, some context functions c(.) would yield a substantial reduction in the number
of parameters compared to a full Markov chain of the same order as the context function.
The VLMC’s are thus an attractive model class, which is often not much exposed to the
curse of dimensionality.

In order to explain our procedure for adaptively selecting and fitting a VLMC, it is
most convenient to represent a context function, and hence the set of relevant histories of
a VLMC, as a tree. We consider trees with a root node on top, from which the branches
are growing downwards, so that every internal node has at most |X| offsprings. Then, each
value of a context function c(.) : Xk → Xk can be represented as a branch (or terminal
node) of such a tree. The context w = c(x0

−k+1) is represented by a branch, whose sub-
branch on the top is determined by x0, the next sub-branch by x−1 and so on, and the
terminal sub-branch by x−`(x0,...,x−k+1)+1.

Example 2.1 |X| = 2, k = 3.
The function

c(x0, x−1, x−2) =


0, if x0 = 0
1, 0, 0, if x0 = 1, x−1 = 0, x−2 = 0
1, 0, 1, if x0 = 1, x−1 = 0, x−2 = 1
1, 1, if x0 = 1, x−1 = 1

can be represented by the tree τc,

0

0 1

10

1

A ‘growing to the left’ sub-branch represents the symbol 0 and vice versa for the symbol 1.

Note that context trees do not have to be complete, i.e., every internal does not need to
have exactly |X| offsprings (when |X| > 2).
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Definition 2.3 Let c(.) be a context function of a stationary VLMC of order k. The
corresponding (|X|-ary) context tree τ and terminal node context tree τ t are defined as

τ = τc = {w;w = c(x0
−k+1), x0

−k+1 ∈ Xk},
τ t = τ tc = {w;w ∈ τc and wu /∈ τc for all u ∈ ∪∞m=1X

m}.

Definition 2.3 says that only terminal nodes in the tree representation τ are considered
as elements of the terminal node context tree τ t. Clearly, we can reconstruct the context
function c(.) from τc or τ tc . The context tree τc is nothing else than the minimal state
space of the VLMC Pc. An internal node with b < |X| offsprings can be implicitly thought
to be complete by adding one complementary offspring, lumping the |X| − b non-present
nodes together.

2.1 The context algorithm

Given data X1, . . . , Xn from a VLMC Pc, the aim is to find the underlying context func-
tion c(.) and an estimate of Pc. We will attack and solve this problem by incorporating
ideas from data compression as given by Weinberger et al. (1995). We describe now the
algorithm for the aim mentioned above. In the sequel we always make the convention that
quantities involving time indices t /∈ {1, . . . , n} equal zero (or are irrelevant). Let

N(w) =
n∑
t=1

1
[X

t+|w|−1
t =w]

, w ∈ X∞, (2.2)

denote the number of occurrences of the string w in the sequence Xn
1 . Moreover, let

p̂(w) = N(w)/n, p̂(u|w) =
N(uw)
N(w)

, w, u ∈ X∞, uw = (. . . , u2, u1, . . . , w2, w1). (2.3)

The algorithm below constructs the estimated context tree τ̂ to be the biggest context
tree such that

∆wu =
∑
x∈X

p̂(x|wu) log(
p̂(x|wu)
p̂(x|w)

)N(wu) ≥ K for all wu ∈ τ̂ t (2.4)

with K = Kn →∞ (n→∞) a cut-off to be chosen by the user.

Step 1 Given data X1, . . . , Xn taking values in a finite space X, fit a maximal (|X|-ary)
context tree, i.e., search for the context function cmax(.) with terminal node context
tree representation τ tmax, where τ tmax is the biggest tree such that every element
(terminal node) in τ tmax has been observed at least twice in the data. This can be
formalized as follows:

w ∈ τ tmax implies N(w) ≥ 2, and,
τ tmax � τ t, where w ∈ τ t implies N(w) ≥ 2.

(τ t1 � τ t2 means: w ∈ τ t1 ⇒ wu ∈ τ t2 for some u ∈ ∪∞m=0X
m (X0 = ∅)).

Set τ t(0) = τ tmax.
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Step 2 Examine every element (terminal node) of τ t(0) as follows (the order of examining is
irrelevant). Let c(.) be the corresponding context function to τ t(0) and let

wu = x0
−`+1 = c(x0

−∞), u = x−`+1, w = x0
−`+2,

be an element (terminal node) of τ t(0), which we compare with its pruned version
w = x0

−`+2 (if ` = 1, the pruned version is the empty branch, i.e., the root node).
Replace the context wu = x0

−`+1 by w = x0
−`+2 if

∆wu =
∑
x∈X

p̂(x|wu) log(
p̂(x|wu)
p̂(x|w)

)N(wu) < K,

with p̂(.) and p̂(.|.) as defined in (2.3). Decision about pruning for every terminal
node in τ t(0) yields a (possibly) smaller tree τ(1) � τ t(0). Let

τ t(1) = {w; w ∈ τ(1) and wu /∈ τ(1) for all u ∈ ∪∞m=1X
m}.

Step 3 Repeat Step 2 with τ(i), τ
t
(i) instead of τ(i−1), τ

t
(i−1) (i = 1, 2, . . .) until no more

pruning is possible. Denote this maximal pruned context tree (not necessarily of
terminal node type) by τ̂ and its corresponding context function by ĉ(.).

Step 4 If interested in probability sources, estimate the transition probabilities p(x1|c(x0
−∞)) =

P[X1 = x1|c(X0
−∞) = c(x0

−∞)] by p̂(x1|ĉ(x0
−∞)), where p̂(.|.) is defined as in (2.2).

The pruning in the context algorithm can be viewed as some sort of hierarchical back-
ward selection. Dependence on some values further back in the history should be weaker,
so that deep nodes in the context tree are considered, in a hierarchical way, to be less rel-
evant. This hierarchical structure is a clear distinction to the CART algorithm (Breiman
et al., 1984), where the tree architecture has no built in time structure.

Consistency for finding an underlying true context function c0(.) and probability dis-
tribution Pc0 in a more restrictive setting goes back to Weinberger et al. (1995). We
denote by

P̂c the maximum likelihood (ML) fitted context model on τc, (2.5)
P̂ĉ0 the fitted VLMC, induced by Step 4 of the context algorithm. (2.6)

Note that the ML fitted context model on τc is given by the estimated transition proba-
bilities p̂(.|w), w ∈ τc, where p̂(.|.) is as in (2.3).

For the algorithm described here, consistency even in an asymptotically infinite dimen-
sional setting has been given in Bühlmann and Wyner (1997), where also more detailed
descriptions of the context algorithm and cross-connections can be found. An efficiency
result is given in Bühlmann (1997). For deriving all these results, we need besides some
technical assumptions which we state in section 3 a lower bound for the cut-off value
Kn ∼ C log(n), C > (2|X| + 3). In this paper we also develop a strategy for estimating
this cut-off Kn as the minimizer of certain risk functions.
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3 Risk functions and sub–models

We restrict ourselves now to the following framework: the data Xn
1 is a finite realization

of a VLMC with context function c0(.) of finite order k0 and corresponding context tree
τc0 . We consider sub-models of the true underlying process Pc0 , namely the set

{Pc : c(.) a context function with context tree representation τc such that τc � τc0},

where the relation for nestedness of models � is defined in terms of terminal nodes of
context trees,

τ1 � τ2 ⇐⇒
(
w ∈ τ t1 ⇒ wu ∈ τ t2 for some u ∈ ∪∞m=0X

m (X0 = ∅)
)
.

The problem of (sub-)model selection is studied in terms of two different risk criteria, the
final prediction error and the expected Kullback-Leibler information.

3.1 Final prediction error

For a predictor Ŷn+1 based on the infinite past Y n
−∞ for a random variable Yn+1, we

consider the loss functions

L2(Yn+1, Ŷn+1) = (Yn+1 − Ŷn+1)2,

δ(Yn+1, Ŷn+1) = 1[Yn+1 6=Ŷn+1].

The L2 loss can be of interest for ordinal data equipped with some ‘Gaussian’ scale (quan-
tized Gaussian data) or also for binary data. The δ loss, or zero-one loss, is interesting for
categorical data without any order or scale.

The final prediction error (FPE) for the quadratic L2 loss dates back to Akaike (1969,
1970) and can be generalized in an obvious way for any convex loss function. Let the data
Xn

1 be a finite realization of the true underlying process Pc0 and let (Yt)t∈Z be another
realization of Pc0 , independent of Xn

1 . Optimal (theoretical) prediction of Yn+1 given the
infinite history Y n

−∞ projected on an element of the sub-models τc � τc0 with context
function c(.) is given by

EPc0
[Yn+1|c(Y n

−∞)] for the L2 loss,
AMPc0

(c(Y n
−∞)) = argmaxx∈XPPc0

[Yn+1 = x|c(Y n
−∞)] for the δ loss.

When estimating the theoretical predictors by the data Xn
1 , we get

ϕ(c(Y n
−∞), Xn

1 ) =
{
EP̂c

[Yn+1|c(Y n
−∞)] for the L2 loss

AMP̂c
(c(Y n

−∞)) for the δ loss , (3.7)

where P̂c is the estimate in (2.5) based on the data Xn
1 .

The predictor ϕ(., .) could also be defined in terms of the estimated probability measure
P̂ĉ0 in (2.6). Under appropriate conditions, the two versions are asymptotically equivalent:
it is known that for τc � τc0 , PP̂c [Yn+1 = x|c(Y n

−∞) = w] = PP̂ĉ0
[Yn+1 = x|c(Y n

−∞) =

w] + oP (n−1) for all x ∈ X and all w ∈ τc, cf. Bühlmann and Wyner (1997).
The FPE’s for the element Pc with corresponding context tree τc � τc0 is then defined as

R(τc, Pc0) = EPc0
[L(Yn+1, ϕ(c(Y n

−∞), Xn
1 ))],

7



where L(., .) = L2 or δ. The general notation R(., .) indicates that the FPE’s are risk
functions. Specifically,

FPEL2(τc) = EPc0
[(Yn+1 − EP̂c [Yn+1|c(Y n

−∞)])2],
FPEδ(τc) = PPc0

[Yn+1 6= AMP̂c
(c(Y n

−∞))].

The FPE measures the risk for predicting the observation Yn+1 in a new sample Y n
1

when estimation is based on the observed data-set Xn
1 . Note that Xn

1 is also referred
to as training set and Y n+1

1 as test set. The following two Theorems describe how the
FPE decomposes into an ‘oracle part’ which is not depending on the model τc (when we
would know the whole true underlying probability distribution Pc0), a bias part (due to
misspecification of the model) and a variance part (due to estimation of the unknown
parameters in the model). In the sequel of the paper, we denote by P (x) = PP [Xm

1 =
x] (x ∈ Xm) and P (x|w) = P (xw)/P (w) (x ∈ Xm1 , w ∈ Xm2). We then make the
following assumptions.

(A1) Pc0 satisfies,

sup
v,w,w′

|p(r)
Z (v, w)− p(r)

Z (v, w′)| < 1− κ, for some κ > 0,

where p(r)
Z (v, w) = P[Zr = v|Z0 = w] denotes the r-step transition kernel of the state

process Zt = c0(Xt
0x
∞
0 ), x∞0 = x0, x0, . . . (t ∈ N0) with (Xt)t∈Z ∼ Pc0 .

The definition of Zt reflects our implicit assumption here that the initial state is
padded with elements x0 ∈ X, i.e., Z0 = w means Z0 = wx∞0 so that the next states
Zt (t > 0) are uniquely determined.

(A2) Pc0 satisfies

min
w∈τc0

Pc0(w) > 0,

min
x∈X,w∈τc0

Pc0(x|w) > 0,

min
wu∈τc0 ,u∈X

∑
x∈X

|Pc0(x|wu)− Pc0(x|w)| > 0.

Assumption (A1) is a Doeblin-type condition, which has been employed in Bühlmann
and Wyner (1997). Assumption (A2) ensures that the VLMC Pc0 is not degenerated: the
states w ∈ τc0 have all positive probabilities, the transition probabilities are bounded away
from zero and the states wu ∈ τc0 are distinguishable from their parent nodes w in the
context tree representation.

Theorem 3.1 Consider a finite realization Xn
1 from Pc0 satisfying (A1), (A2) and with

context tree representation τc0. Then, for any element of the sub-models with context
function c and corresponding tree representation τc � τc0, the following decomposition
holds:

FPEL2(τc) = S +B + Vn,

S = EPc0
[(Yn+1 − EPc0 [Yn+1|c0(Y n

−∞)])2],

B =
(
EPc0

[Yn+1|c(Y n
−∞)]− EPc0 [Yn+1|c0(Y n

−∞)]
)2
,

Vn = EPc0
[
(
ϕ(c(Y n

−∞), Xn
1 )− EPc0 [Yn+1|c(Y n

−∞)]
)2],
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where ϕ(c(Y n
−∞), Xn

1 ) = EP̂c
[Yn+1|c(Y n

−∞)] as in (3.7) and

nVn − C(τc, Pc0) = oP (1),

C(τc, Pc0) =
∑
w∈τc

∑
x1,x2∈X

x1x2

∞∑
k=−∞

(
Pc0(x2|w)PPc0 [X0

−|w| = x1w|Xk
k−|w| = x2w]− Pc0(x1w)

)
.

The S term is the ‘oracle’ FPE of order O(1), the B term is the bias term of order O(1)
and the Vn term is a penalty term, which behaves asymptotically like n−1C(τc, Pc0). The
constant C(τc, Pc0) is of more complex nature than say the variance term for prediction
in an AR(p) model (which behaves as p/n). But by assumption (A2) we still can bound
the penalty term linearly in |τc| as

C(τc, Pc0) ≤ |τc|M(X, k0, κ),

where M(X, k0, κ) is a constant, depending on the order k0 of the VLMC Pc0 and the
value κ in (A1).

For analyzing the FPEδ we make the additional rather weak assumption about the
uniqueness of the AMPc0

,

(B1) For a sub-model Pc with corresponding context tree τc � τc0 ,

min
w∈τc,k 6=AMPc0

(w)
|Pc0(AMPc0

(w)|w)− Pc0(k|w)| > ε, ε > 0,

and denote by π = minw∈τc,x∈X Pc0(xw) > 0.

Note that the fact π > 0 is implied by assumption (A2).

Theorem 3.2 Consider a finite realization Xn
1 from Pc0 satisfying (A1), (A2) and with

context tree representation τc0. Then, for any element of the sub-models with context
function c and corresponding tree representation τc � τc0, satisfying (B1), the following
decomposition holds:

FPEδ(τc) = S +B + Vn,

S = PPc0
[Yn+1 6= AMPc0

(c0(Y n
−∞))],

B = PPc0
[Yn+1 6= AMPc0

(c(Y n
−∞))]− PPc0 [Yn+1 6= AMPc0

(c0(Y n
−∞))],

Vn = PPc0
[Yn+1 6= ϕ(c(Y n

−∞), Xn
1 )]− PPc0 [Yn+1 6= AMPc0

(c(Y n
−∞))],

where ϕ(c(Y n
−∞), Xn

1 ) = AMP̂c
(c(Y n

−∞)) as in (3.7) and for n sufficiently large,

|Vn| ≤ (|X|+ 1)C1 exp(−C2(κ)ε2π2(n− k0 + 1)/ log(n− k0 + 1)),
k0 the order of Pc0 , C1 > 0 a constant, C2(κ) > 0 depending only on κ in (A1).

The ‘oracle’ FPE is again denoted by S being of order O(1), B is the bias term of
order O(1). The penalty term Vn decays at least exponentially in n, the size |τc| enters
only implicitly into the speed of the exponential decay: larger sub-models have typically
smaller values ε and π yielding smaller values ε2π2 and hence slower, but still exponential
decay for the bound of Vn. This suggests that the bias part B is more dominant in FPEδ
than in FPEL2 .

For both types of FPE, Theorems 3.1 and 3.2 show that the S- and B-terms are of
constant order O(1), whereas the variance terms Vn decrease as sample size increases.
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3.2 Kullback-Leibler information

When considering the goodness of a model in terms of its whole n-dimensional distribution,
the Kullback-Leibler information (KLI)

KLI(τc) = In(Pc0 , P̂c) =
∫

Xn

log

(
Pc0(yn1 )
P̂c(yn1 )

)
dPc0(yn1 )

measures a loss between the n-dimensional marginals of Pc0 and the maximum likelihood
estimate P̂c of a sub-model Pc with context tree representation τc � τc0 . Similar as
with the prediction error, P̂c is estimated based on the observed data Xn

1 , whereas the
integration-variable yn1 can be thought as a new sample (test set). Often one uses as a
risk function the expected KLI(τc),

EKLI(τc) = EPc0
[In(Pc0 , P̂c)]. (3.8)

Theorem 3.3 Consider a finite realization Xn
1 from Pc0 satisfying (A1), (A2) and with

context tree representation τc0. Then, for any element of the sub-models with context
function c and corresponding tree representation τc � τc0, the following decomposition
holds:

KLI(τc)/n = In(Pc0 , P̂c)/n = Bn + Vn/n,

Bn = In(Pc0 , P̄c)/n,

Vn ⇒
1
2
ZTΣ(τc, Pc0)Z (n→∞),

where P̄c is the restriction of Pc0 on the sub-model structure τc, generated by the transition
probabilities

P̄c(x|w) = Pc0(xw)/Pc0(w) for x ∈ X, w ∈ τc,

Z ∼ ND(τc)(0, I), D(τc) = |τc|(|X| − 1) the dimension of the sub-model, and Σ(τc, Pc0)
a non-degenerate D(τc) ×D(τc) matrix, depending on the sub-model structure τc and the
underlying process Pc0.

The Bn term is a bias part of the constant order O(1) due to misspecification of the
model, and Vn/n is a penalty term of the order OP (n−1). More insight about the matrix
Σ(τc, Pc0) can can be obtained from the proof in section 7.

Remark 3.1. Tong (1975) derives the limiting χ2-distribution of 2 times the Vn term
for a full Markov chain. Although not explicitly pointed out, this only holds for τc = τc0
being the true model: then Σ(τc0 , Pc0) = ID(τc0 ) and the limiting distribution of Vn equals
χ2
D(τc0 )/2. The limiting distribution of Vn in general is connected to the derivation of the

TIC criterion (Takeuchi, 1976), see also Shibata (1989, section 2): this approach accounts
for the effect that the true model is generally not equal to the fitted model.
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4 A bootstrap method for estimating risk functions

An often used approach to estimate the various risk functions in section 3 is given by esti-
mating the different terms in Theorems 3.1-3.3. Criteria like AIC, BIC, TIC, cf. Shibata
(1989), are aiming to minimize a criterion function ‘goodness of fit + penalty’. They es-
sentially estimate the unknown asymptotic values in Theorems 3.1-3.3: the (S+B)-terms
by a goodness of fit statistic, i.e., residual sum of squares in the Gaussian case, and the
Vn-terms by different strategies. More recently, the idea of bootstrap in model selection
has been pursued, but mainly for bias correction in the estimation of the penalty term,
cf. Efron (1983, 1986), Cavanaugh and Shumway (1997), Shibata (1997) clarifies about
different bootstrap strategies for bias corrections.

We propose here a model selection approach for the dependent setting with VLMC’s
which is entirely driven by a bootstrap scheme, rather than only making a bias correction
via resampling for estimation of a penalty term. This seems more appealing than com-
bining estimation of (S +B)-terms, Vn-terms and bias correction for the Vn-terms. Also,
resampling schemes are potentially able to pick up not only a bias but also higher order
cumulants. In principle, estimation of (conditional) prediction errors (but not risks in the
sense of an expected prediction error) could also be done with some cross-validation tech-
nique for dependent data. However, cross-validation estimates are usually highly variable,
cf. Efron (1983), and thus not very accurate.

Below is the general principle for estimating a risk function of Pc with structure τc �
τc0 , being a sub-model of the true underlying process Pc0 . Assume that we have given
data X1, . . . , Xn.

Step 1 Fit with the context algorithm in section 2.1 a VLMC P̂ĉ0 as in (2.6).

Step 2 For a context model with structure τc � τc0 , compute the bootstrap risk functions,

FPE∗(τc) = EP̂ĉ0
[L(Y ∗n+1, ϕ(c((Y ∗)n1 ), (X∗)n1 )|Xn

1 ], L = L2, δ,

KLI∗(τc) = In(P̂ĉ0 , P̂
∗
c ),

where ϕ(., .) is as in (3.7) and

(Y ∗)n+1
1 ∼ P̂ĉ0 ◦ π

−1
1,...,n+1,

(X∗)n+1
1 ∼ P̂ĉ0 ◦ π

−1
1,...,n, (4.9)

with (Y ∗)n+1
1 and (X∗)n1 being independent finite realizations of the fitted model P̂ĉ0

in (2.6) based on the data Xn
1 , and π1,...,m (m ∈ N) the coordinate function. The

estimate

P̂ ∗c = Tc((X∗)n1 ) (4.10)

is the plug-in version of the ML fitted context model P̂c = Tc(Xn
1 ) on τc, as in (2.5).

The bootstrap FPE∗(τc) is then directly used as an estimate of the true FPE(τc), the boot-
strap KLI∗(τc) is a random variable depending on (X∗)n1 (given the original sample Xn

1 ):
often, one is interested in EKLI∗(τc) = EP̂ĉ0

[In(P̂ĉ0 , P̂
∗
c )|Xn

1 ] as an estimate of EKLI(τc)
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as defined in (3.8). In practice, the expectations with respect to P̂ĉ0 are evaluated via
Monte-Carlo. Minimization of such estimated risks over all (or some) sub-models τc � τc0
of the true underlying VLMC Pc0 yields in theory the estimated optimal (or sub-optimal)
model. The initial estimate P̂ĉ0 serves as an approximation for the true underlying process
Pc0 .

Theorem 4.1 Assume the situation and notation in Theorem 3.1. Moreover, suppose
that the cut-off Kn > (2|X|+ 3) log(n) in Step 2 of the context algorithm for constructing
the estimate P̂ĉ0. Then,

FPE∗L2
(τc) = S∗ +B∗ + V ∗n ,

S∗ = S + oP (1) (n→∞),
B∗ = B + oP (1) (n→∞),
V ∗n = Vn + oP (n−1) (n→∞).

The quantities S∗, B∗ and V ∗n are the plug-in versions of S, B and Vn, respectively with
P̂ĉ0 instead of Pc0 and ĉ0 instead of c0.

Theorem 4.2 Assume the situation and notation in Theorem 3.2. Moreover, suppose
that the cut-off Kn > (2|X|+ 3) log(n) in Step 2 of the context algorithm for constructing
the estimate P̂ĉ0. Then,

FPE∗δ(τc) = S∗ +B∗ + V ∗n ,

S∗ = S + oP (1) (n→∞),
B∗ = B + oP (1) (n→∞),
V ∗n = OP (exp(−Cn)) (n→∞), C > 0 a constant.

The quantities S∗, B∗ and V ∗n are the plug-in versions of S, B and Vn, respectively, with
P̂ĉ0 instead of Pc0 and ĉ0 instead of c0.

Theorem 4.3 Assume the situation and notation in Theorem 3.3. Moreover, suppose
that the cut-off Kn > (2|X|+ 3) log(n) in Step 2 of the context algorithm for constructing
the estimate P̂ĉ0. Then,

KLI∗(τc)/n = In(P̂ĉ0 , P̂
∗
c )/n = B∗n + V ∗n /n,

B∗n = Bn + oP (1) (n→∞),
V ∗n ⇒ (limiting distribution of Vn) in probability as (n→∞).

The quantities B∗n and V ∗n are the plug-in versions of Bn and Vn, respectively, with P̂ĉ0
instead of Pc0 and ĉ0 instead of c0.

Remark 4.1. Theorems 4.1-4.3 describe the consistency of the bootstrap risk estimator,
even for the higher order Vn-terms. Consistency for the Vn terms is important for high-
dimensional parameter spaces, here given by the number D(τc): if D(τc) is large, then the
Vn-terms are typically not that much negligible compared to the (S +B)-terms.

Remark 4.2. Using EKLI∗(τc) = EP̂ĉ0
[KLI∗(τc)|Xn

1 ] as a criterion for model selection
is not equivalent to AIC. In general, the term penalizing large models in EKLI∗(τc) is
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not converging to (the wrong constant) D(τc)/2 which would correspond to the equivalent
penalty term 2D(τc) in AIC. In our set-up, AIC is generally not a consistent criterion for
minimizing EKLI(τc).

Remark 4.3. It has been pointed out by Efron (1983) that estimation of a prediction
error with the nonparametric bootstrap in the i.i.d. case has a potential to underesti-
mate. But the informal distance arguments, leading also to Efron’s .632 estimator, lack
any heuristics here because our resampling is based on a (semi-)parametrically estimated
VLMC P̂ĉ0 .

4.1 Tuning the context algorithm

We denote in the sequel by

R(τc) =


FPEL2(τc)
FPEδ(τc)
EKLI(τc)

one of the different risk functions in section 3 (thereby notationally neglecting the de-
pendence on Pc0). Even when we would know the risk function R(τc) for all sub-models
τc � τc0 , the search over all these sub-models can be computationally infeasible. We focus
here on the problem of finding the best sub-model among the models produced by the
context algorithm.

Denote by τ̂0 = τ tmax the maximal context tree as in Step 1 of the context algorithm
in section 2.1. By successively increasing the cut-off value K in Step 2 of the context
algorithm, we get a finite sequence of nested context tree estimates,

τ̂0 � τ̂1 � . . . � τ̂m̂−1 � τm̂ = τroot, (4.11)

where τroot is the root corresponding to independence.
Note that the trees τ̂k (0 ≤ k ≤ m̂− 1) and m̂ depend on the data Xn

1 . We can thus think
of a cut-off K as a selection rule,

K : Xn
1 → τ̂K , τ̂K ∈ {τ̂0, . . . , τ̂m̂−1, τroot}. (4.12)

What we want is to minimize an overall risk R′(K) over cut-off parameters (or selection
rules) K, with R′(.) now also taking into account the randomness of the tree τ̂K . Note
that the randomness comes in by the context algorithm and would also be present, even if
risk functions for fixed models τc would be completely known. Denote by ĉK the estimated
context function with corresponding tree representation K(Xn

1 ) = τ̂K as in (4.12). We
define the overall risk R′(.) as

R′(K) =


EPc0

[L(Yn+1, ϕK(ĉK(Y n
−∞), Xn

1 ))] for FPE with L = L2, δ

EPc0
[In(Pc0 , P̂ĉK )] = EPc0

[
∫
Xn log

(
Pc0 (yn1 )

P̂ĉK (yn1 )

)
dPc0(yn1 )] for EKLI

, (4.13)

where

ϕK(ĉK(Y n
−∞), Xn

1 ) =

{
EP̂ĉK

[Yn+1|ĉK(Y n
−∞)])2 for the L2 loss

AMP̂ĉK
(ĉK(Y n

−∞)) for the δ loss ,
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and P̂ĉK as in (2.6), but now with a notation emphasizing the dependence on the cut-off
K.
The optimal cut-off is then

Kopt = argminKR
′(K). (4.14)

Estimation of R′(.) is again proposed by a bootstrap scheme. Let ĉ∗K be the bootstrap
version with corresponding context tree τ̂∗K = K((X∗)n1 ), K(.) as in (4.12). The bootstrap
estimation of the overall risk R′(K) is then pursued similarly as in the previous section
by the plug-in principle.

Step 1 For a cut-off K0, fit a VLMC P̂ĉK0
as in (2.6).

Step 2 Compute the bootstrap risk functions

FPE∗(K) = EP̂ĉK0

[L(Y ∗n+1, ϕK(ĉ∗K((Y ∗)n1 ), (X∗)n1 )|Xn
1 ], L = L2, δ,

EKLI∗(K) = EP̂ĉK0

[In(P̂ĉK0
, P̂ ∗ĉ∗K

)|Xn
1 ],

where (Y ∗)n+1
1 , (X∗)n1 are as in (4.9) but with P̂ĉK replacing the notation P̂ĉ0 .

The data-driven cut-off values are then defined as

K̂ = argminKFPE∗(K) or K̂ = argminKEKLI∗(K). (4.15)

Rigorous mathematical results for FPE∗(K), EKLI∗(K) or K̂ in (4.15) are difficult to
obtain due to the randomness of a context function ĉK for a given cut-off K. When
treating ĉK as fixed and hence incorrectly ignoring its stochastic nature, we are back in
the set-up of Theorems 4.1 - 4.3. It is an open question how to fill this gap in theory.
The performance of the algorithmic implementation for finite sample sizes is investigated
in section 5.

4.1.1 Relation to optimal pruned subtrees

Assume that we know the risk function R(τc) for all fixed sub-model structures τc � τc0 .
Optimality within the sequence of nested trees {τ̂k}k in (4.11) then motivates the definition

τ̃opt = τ̃opt(Xn
1 ) = argminτ̂kR(τ̂k).

The tree τ̃opt, which depends on the data, is called the ‘optimal pruned sub-tree’ with
respect to the risk function R(.), cf. Breiman et al. (1984, chapters 3.3-3.4, 10). When
the risk R(.) is unknown, we can replace it by some estimate, in our case by e.g. the
bootstrap estimate R∗(.).

However, the tree τ̃opt might not be optimal with respect to some overall risk R′(.)
as in (4.13), treating τ̂k as random. When looking at R′(.), we again have to consider a
selection rule, say

T : Xn
1 → τ̂T ∈ {τ̂1, . . . , τ̂m̂−1, τroot},

with {τ̂1, . . . , τ̂m̂−1, τroot} as in (4.11). But such a rule T must coincide with the selection
rule given by the cut-off K in (4.12). Thus, our algorithmic implementation in section 4.1
can be interpreted as optimal subtree pruning with respect to some overall risk R′(.).
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5 Numerical examples

We study our method for tuning the context algorithm on some simulations for two dif-
ferent models.

5.1 Computational implementation

Approximate calculation of FPE∗(K) in Step 2 of the algorithm in section 4.1 can be done
via Monte Carlo with B replicates in a quite standard way. We always use here B = 100.

1. Generate for i = 1, . . . , B,

X∗i = (X∗i,1, . . . , X
∗
i,n) ∼ P̂ĉK0

◦ π−1
1,...,n,

Y∗i = (Y ∗i,1, . . . , Y
∗
i,n, Y

∗
i,n+1) ∼ P̂ĉK0

◦ π−1
1,...,n+1,

where X∗i , Y∗j independent for all i, j, X∗i , X∗j independent for i 6= j, Y∗i , Y∗j
independent for i 6= j.

2. For i = 1, . . . , B, compute ĉ∗i,K , based on X∗i and given by the context tree represen-
tation τĉ∗i,K = K(X∗i ), with K(.) being the selection-rule (cut-off) as given in (4.12).
Then calculate ϕK(ĉ∗i,K((Y∗i )

n
1 ),X∗i ) and set

Li = L(Y ∗i,n+1, ϕK(ĉ∗i,K((Y∗i )
n
1 ),X∗i )).

3. Use B−1
∑B

i=1 Li as an approximation for FPE∗(K).

Instead of EKLI(K) as a risk for selection of K, we consider the negative expected log-
likelihood function (NELL), which is equivalent for the purpose of minimization, but
computationally cheaper,

NELL(K) = −
∫

Xn

log(P̂ĉK (yn1 ))dPc0(yn1 ),

ENELL(K) = EPc0
[NELL(K)]. (5.16)

The approximate calculation of ENELL∗(K), analogous as for EKLI∗(K) in Step 2 of the
algorithm in section 4.1, can be done without integrating over Xn. We proceed again by
Monte Carlo with B replicates,

1. For i = 1, . . . , B, generate analogously as in Step 2 of the algorithm in section 4.1,

X∗i = (X∗i,1, . . . , X
∗
i,n),

Y∗i = (Y ∗i,1, . . . , Y
∗
i,n).

2. For i = 1, . . . , B, compute ĉ∗i,K , based on X∗i and given by the context tree represen-
tation τĉ∗i,K = K(X∗i ), and then calculate

Ei = − log(P̂ ∗ĉ∗i,K (Y∗i )),

where P̂ ∗ĉ∗i,K is given in (4.10), based on X∗i .
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3. Use B−1
∑B

i=1Ei as an approximation for ENELL∗(K).

We use again B = 100. It is interesting to note that it is sufficient to compute for every
replicate set with label i only one value Ei instead of an n-dimensional integral. The
one single Monte Carlo iteration over the index set i = 1, . . . , B takes care about the
integration in NELL∗(K), compare with formula (5.16), as well as of the expectation
EP̂ĉK0

[NELL∗(K)].

5.2 Simulations

We consider the VLMC’s Pc0 , represented by the following context trees. The tuple of
values at a terminal node w represents the transition probabilities (Pc0(0|w), . . . , Pc0(|X|−
1, w)).

(M1) Binary VLMC of order 8 (X = {0, 1}).

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1
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(M2) 4-ary VLMC of order 2 (X = {0, 1, 2, 3}).

0 1 2

0 1 2 3 0 1 2 3

3

We consider estimation of the different overall risks R′(K) (FPEL2 , FPEδ and ENELL
as in (5.16)) for different initial cut-off values K0 and the risks R′(K̂) when using the
estimated cut-off parameter K̂ in (4.15). The sample sizes in this study are n = 200 and
n = 1000.

The estimated risks R̂′(K) are computed as described in section 5.1 based on 100 boot-
strap replicates. We choose as initial cut-offs K0 the values χ2

|X|−1;0.9/2 and χ2
|X|−1;0.8/2,

respectively: the χ2/2 quantiles, as the limiting quantiles for one log-likelihood ratio test
when considering to prune one terminal node in the context algorithm, serve as a good
platform for the magnitude of a cut-off.

Figures 5.2 and 5.2 show a sample version of EPc0 [R̂′(K)], based on 100 simulations
of the true process Pc0 . The cut-off values K̂ in (4.15) are estimated for every individual
realization, based on 100 bootstrap replicates. A sample version of EPc0 [R′(K̂)] is then
computed over 100 simulations. We compare this with sample versions of R′(Kopt) =
minKR

′(K) and with sample versions of Roracle, i.e., the risk when knowing the true
process Pc0

∗. All the sample versions are based on 100 simulations of the true process
Pc0 .

Results are given in Tables 5.2 - 5.2 and graphically displayed in Figures 5.2 - 5.2. The
risk function ENELL is always standardized by the factor n−1.
We can summarize as follows.

∗The oracle FPE is the risk for the theoretically optimal predictor EPc0 [Yn+1|c0(Y n−∞)] or
AMPc0

(c0(Y n−∞)), respectively. The oracle ENELL is −EPc0 [log(Pc0(Y n1 ))].
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model, risk, K0 E[R′(K̂)] E[R′(K̂)]/R′(Kopt) E[R′(K̂)]/Roracle
(M1), FPEL2 , K0 = 1.35 0.21 (0.02) 1.17 1.21
(M1), FPEL2 , K0 = 0.82 0.23 (0.03) 1.28 1.33
(M2), FPEδ, K0 = 3.13 0.21 (0.04) 1.00 1.11
(M2), FPEδ, K0 = 2.32 0.22 (0.04) 1.05 1.16
(M2), ENELL/n, K0 = 3.13 0.87 (0.01) 1.02 1.20
(M2), ENELL/n, K0 = 2.32 0.87 (0.01) 1.02 1.20

Table 5.1: Risks for sample size n = 200.

model, risk, K0 E[R′(K̂)] E[R′(K̂)]/R′(Kopt) E[R′(K̂)]/Roracle
(M1), FPEL2 , K0 = 1.35 0.20 (0.02) 1.11 1.14
(M1), FPEL2 , K0 = 0.82 0.22 (0.03) 1.26 1.23
(M2), FPEδ, K0 = 3.13 0.20 (0.04) 1.11 1.11
(M2), FPEδ, K0 = 2.32 0.21 (0.04) 1.17 1.17
(M2), ENELL/n, K0 = 3.13 0.742 (0.001) 1.01 1.03
(M2), ENELL/n, K0 = 2.32 0.754 (0.003) 1.02 1.05

Table 5.2: Risks for sample size n = 1000.
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Figure 5.1: Risks for sample size n = 200. Model (M1) for FPEL2 , model (M2) for FPEδ
and ENELL, respectively. Dots: R′(K); dotted line: E[R̂′(K)]; dashed line: E[R′(K̂)].
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Figure 5.2: Risks for sample size n = 1000. Model (M1) for FPEL2 , model (M2) for FPEδ
and ENELL, respectively. Dots: R′(K); dotted line: E[R̂′(K)]; dashed line: E[R′(K̂)].

1. The increase in risk by using K̂ instead of the theoretically optimal Kopt is biggest
in the cases [(M1), FPEL2 ], at most 28% for n = 200 and 26% for n = 1000. In the
best cases, the loss is 0% for n = 200 and 1% for n = 1000.

2. The ratio E[R′(K̂)]/R′(Kopt) does not necessarily improve with larger sample size.
This is due to the fact that the gain for R′(Kopt) with larger sample size can dominate
the gain of E[R′(K̂)] with increasing sample size. But E[R′(K̂)] always improves
with increasing sample size, up to the non-significant difference in case [(M2), FPEδ,
K0 = 2.32] due to the finite averaging over 100 simulations.

3. The sensitivity on the initial cut-off K0 is not very big. The most sensitive cases are
[(M1), FPEL2 ], which are also the most difficult cases in terms of performance.

4. Figures 5.2 and 5.2 show that even if estimation of R′(.) has a substantial bias,
i.e. |E[R̂′(K)]−R′(K)| large, the substituted minimizers of R′(.) and E[R̂′(.)] yield
rather similar risks, i.e., |R′(argminKR′(K)) − R′(argminKE[R̂′(K)])| small. This
explains visually that using K̂ instead of Kopt works reasonably well.

6 Conclusions

We have shown in section 3 the asymptotic behavior of different risk functions for sub-
models in the class of finite space variable length Markov chains. The choice of the loss
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function matters and asymptotic equivalence among different risks is not true in general.
Depending on the application and pre-knowledge, the flexibility of choosing loss functions
can be important.

A semiparametric type bootstrap scheme is then proposed in section 4. It is shown to
be asymptotically valid for estimating risks, even for higher order variance parts, and it
can then be used for model selection among variable length Markov chains. The bootstrap
approach is attractive since it is generally applicable for various loss functions, and model
selection can then be done with an optimality focus for specific aims, such as predicting
a new observation or estimating the underlying n-dimensional distribution. In the special
case of estimating the order of full Markov chains, our methodology also improves the AIC
criterion which has been proposed in the past.

From the abstract semiparametric bootstrap principle for estimating risks in section 4
we also gain insight how to choose the cut-off parameter K in the context algorithm, see
section 4.1. The problem of tuning the context algorithm is very important for practical
applications. The idea is somewhat related to optimal tree pruning in Breiman et al.
(1984, chapter 11.7) for CART with independent observations, but our approach takes
the randomness of a pruned tree into account. As in model selection mentioned above,
our method allows again a tuning which is tailored towards some specific aims, which can
be chosen by the user via an appropriate loss function. A simulation study in section 5
confirms the usefulness and robustness of our tuning proposal.

7 Proofs

We usually suppress the index Pc0 for moments or probabilities with respect to the measure
Pc0 .

Proof of Theorem 3.1: The decomposition FPEL2(τc) = S+B+Vn follows by the fact
that

EPc0
[Yn+1 − E[Yn+1|c(Y n

−∞)]|Xn
1 , c(Y

n
−∞)] = 0 a.s.(Pc0),

EPc0
[Yn+1 − E[Yn+1|c0(Y n

−∞)]|Xn
1 , c0(Y n

−∞)] = 0 a.s.(Pc0).

It remains to analyze the Vn part. Denote by

ξ̂ = ξ̂(c(Y n
−∞)) = ϕ(c(Y n

−∞), Xn
1 ) = EP̂c

[Yn+1|c(Y n
−∞)],

ξ = ξ(c(Y n
−∞)) = EPc0

[Yn+1|c(Y n
−∞)].

Then,

Vn = E[E[(ξ̂ − ξ)2|c(Y n
−∞)]]

= E[V ar(ξ̂|c(Y n
−∞))] + E[(E[ξ̂|c(Y n

−∞)]− ξ)2] = In + IIn. (7.17)

We first show that IIn is asymptotically negligible. Fix w = c(Y n
−∞) and note that by

assumption (A2) Pc0(w) > 0. Then, with n′ = n− |w| and for x ∈ X,

P̂c(x|w) =
N(xw)
N(w)

=
n′−1N(xw)
Pc0(w)

− n′−1N(xw)
P 2
c0(w)

(n′−1N(w)− Pc0(w)) + 2
n′−1N(xw)
P̃ 3(w)

(n′−1N(w)− Pc0(w))2, (7.18)
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where |P̃ (w)− Pc0(w)| ≤ |n′−1N(w)− Pc0(w)|, and N(.) as in (2.2).
By assumption (A1), which ensures the geometric φ-mixing property, cf. Doukhan (1994)
or see also our remark 7.1, we get

n1/2(n′−1N(w)− Pc0(w))⇒ N (0, σ2(w)),

σ2(w) =
∞∑

k=−∞
Cov(1[Xm−1

0 =w], 1[Xk+m−1
k =w]), m = |w|, (7.19)

and

nCov(n′−1N(xw), n′−1N(w))→ τ2(xw),

τ2(xw) =
∞∑

k=−∞
Cov(1[Xm

0 =xw], 1[Xk+m−1
k =w]), m = |w|. (7.20)

Using (7.19), (7.20) and uniform integrability of n
′−1N(xw)

P̃ 3(w)
n(n′−1N(w)−Pc0(w))2 (this can

be shown by using P̃ (w) > 0 a.s.(Pc0), 0 ≤ n′−1N(xw) ≤ 1 and by the geometric φ-mixing
property of Pc0 , implied by (A1), together with the boundedness of indicator functions)
we get

nE[P̂c(x|w)− Pc0(x|w)|w] = − 1
P 2
c0(w)

τ2(xw) + 2
Pc0(x|w)
P 2
c0(w)

σ2(w) + o(1). (7.21)

With (7.21) and the finiteness of τc we get

IIn = E[(E[ξ̂|c(Y n
−∞)]− ξ)2] = O(n−2). (7.22)

For the variance part In we write for fixed w = c(Y n
−∞),

nV ar(ξ̂|w) =
∑

x1,x2∈X

x1x2nCov(
N(x1w)
N(w)

,
N(x2w)
N(w)

),

and using an expansion similar as in (7.18) we obtain with n′ = n− |w|,

nV ar(ξ̂|w) =
∑

x1,x2∈X

x1x2
1

P 2
c0(w)

nCov(n′−1N(x1w), n′−1N(x2w)) + o(1).

Similar to (7.20) we then get with m = |w|,

nV ar(ξ̂|w) =
1

P 2
c0(w)

∑
x1,x2∈X

x1x2

∞∑
k=−∞

Cov(1[Xm
0 =x1w], 1[Xk+m

k =x2w]) + o(1)

=
1

Pc0(w)

∑
x1,x2∈X

x1x2Pc0(x2|w)
∞∑

k=−∞
(PPc0 [Xm

0 = x1w|Xk+m
k = x2w]− Pc0(x1w))

+ o(1).

Thus, by integrating over w = c(Y n
−∞), nIn = C(τc, Pc0)+o(1). This, together with (7.17)

and (7.22) completes the proof. �
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Proof of Theorem 3.2. The decomposition FPEδ(τc) = S + B + Vn follows by the
definitions. It remains to analyze the Vn term. We write

|Vn| = |E[1[Yn+1 6=AMPc0
(c(Y n−∞))] − 1[Yn+1 6=ϕ(c(Y n−∞),Xn

1 )]|c(Y n
−∞)]|

≤ E[1[ϕ(c(Y n−∞),Xn
1 ) 6=AMPc0

(c(Y n−∞))]|c(Y
n
−∞)]. (7.23)

We now fix w = c(Y n
−∞). By assumption (B1),

P[ϕ(w,Xn
1 ) 6= AMPc0

(w)|w] ≤ P[max
x∈X
|P̂c(x|w)− Pc0(x|w)| > ε/2|w]. (7.24)

Similarly as in (7.18) we get with n′ = n− |w|,

P̂c(x|w)− Pc0(x|w)

=
1

Pc0(w)
(n′−1N(xw)− Pc0(xw))− n′−1N(xw)

P̃ 2(w)
(n′−1N(w)− Pc0(w))

= In − IIn, (7.25)

where P̃ (w) = Pc0(w) + ν(n′−1N(w)− Pc0(w)), 0 < ν < 1.
Consider the sets

Dn(x,w) = {|n′−1N(xw)− Pc0(xw)| > Pc0(xw)ε/6}
En(w) = {|n′−1N(w)− Pc0(w)| > Pc0(w)ε/6}.

Then,

|In| ≤ ε/6Pc0(x|w) ≤ ε/6 on DC
n (x,w). (7.26)

For the second term IIn in (7.25), consider first n′−1N(xw)

P̃ 2(w)
. The denominator can be

bounded on ECn (w) as

P̃ 2(w) ≥ Pc0(w)2(1− ε/6)2 ≥ Pc0(w)225/36,

since ε ≤ 1.
For the numerator, on ECn (w),

n′−1N(xw) ≤ Pc0(w)(1 + ε/6) ≤ Pc0(w)7/6,

since ε ≤ 1.
Thus, on DC

n (x,w) ∩ ECn (w),

n′−1N(xw)
P̃ 2(w)

≤ 2
Pc0(w)

.

On the other hand, on ECn (w), |n′−1N(w)− Pc0(w)| ≤ Pc0(w)ε/6. Thus,

|IIn| ≤ ε/3 on DC
n (x,w) ∩ ECn (w). (7.27)
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Therefore, by (7.25)-(7.27),

max
x∈X
|P̂c(x|w)− Pc0(x|w)| > ε/2 on {∪x∈XDn(x,w)} ∪ En(w),

and thus

P[max
x∈X
|P̂c(x|w)− Pc0(x|w)| > ε/2|w] ≤

∑
x∈X

P[Dn(x,w)] + P[En(w)]. (7.28)

By formula (7.23), (7.24) and (7.28),

|Vn| ≤ |X| max
x∈X,w∈τc

P[Dn(x,w)] + max
w∈τc

P[En(w)]. (7.29)

It remains to give some uniform bounds for P[Dn(x,w)] and P[En(w)]. For the set
Dn(x,w), we write

|n′−1N(xw)− Pc0(xw)| ≤ |n′−1N(xw)− E[n′−1N(xw)]|+ Pc0(xw)/n′.

Thus, for n′ > 30/ε, Pc0(xw)/n′ < ε/30Pc0(xw). Hence for n′ > 30/ε, |n′−1N(xw) −
E[n′−1N(xw)]| > Pc0(xw)ε/5 implies |n′−1N(xw) − Pc0(xw)| > Pc0(xw)ε/6. We then
consider the sets

D̃n(x,w) = {|n′−1N(xw)− E[n′−1N(xw)]| > Pc0(xw)ε/5} ⊇ Dn(x,w) for n′ > 30/ε.

Now, we employ some exponential inequalities to bound the probabilities for En(w) and
D̃n(x,w). We follow a technique described in Doukhan (1994, Proposition 2, Ch. 1.4.2).
For both type of sets we use σ = A(log(n − k0 + 1))1/2 (A a constant) in the notation
of Doukhan. Note that assumption (A1) implies for the φ-mixing coefficients φPc0 (k) ≤
(1 − κ)k. Thus, in the notation of Doukhan’s Proposition 2, kn ≤ C(κ) log(n − k0 + 1),
C(κ) > 0 a constant depending on κ. For the sets En(w) and D̃n(x,w) we have in
Doukhan’s notation x = Pc0(w)ε

√
n′/(6σ) and x = Pc0(xw)ε

√
n′/(5σ), respectively. Then,

for A sufficiently large, the restriction in Doukhan 0 ≤ x ≤ σ
√
n′

8bkn
holds. Note that

n′ ≥ n− k0 + 1 and by assumption (B1), Pc0(xw) ≥ π for all xw. Then, Proposition 2 in
Doukhan (1994, Ch. 1.4.2) yields for n′ > 30/ε, i.e., for n sufficiently large,

max
x∈X,w∈τc

P[D̃n,w] ≤ C1 exp(−C2(κ)ε2π2(n− k0 + 1)/ log(n− k0 + 1)),

and an even better bound (a bigger constant C2(κ)) applies for maxw∈τc P[En(w)].
These bounds, together with (7.29) complete the proof. �

Proof of Theorem 3.3. We decompose

KLI(τc)/n = Bn + Vn/n, Vn =
∫

Xn

log

(
P̄c(yn1 )
P̂c(yn1 )

)
dPc0(yn1 ). (7.30)

It is then helpful to parameterize the probability measures on X∞ as P̄c = P(c,θ̄), P̂c =
P(c,θ̂), Pc0 = P(c0,θ0), where θ̄, θ̂ and θ0 are the transitions probabilities on τc and τc0 ,
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respectively. Without loss of generality we assume X = {0, . . . , |X| − 1}: then, these
transition probabilities are indexed as

(θ̄)wx = Pc0(x|w) = Pc0(xw)/Pc0(w), w ∈ τc,
(θ̂)wx = P̂c(x|w) = N(xw)/N(w), w ∈ τc (the MLE on τc),
(θ0)wx = Pc0(x|w) = Pc0(xw)/Pc0(w), w ∈ τc0 .

As in standard maximum likelihood theory we develop

log(P(c,θ̂)(y
n
1 )) = log(P(c,θ̄)(y

n
1 )) + U(c,θ̄)(y

n
1 )T (θ̂ − θ̄) + 1/2(θ̂ − θ̄)TH(c,θ̃)(y

n
1 )(θ̂ − θ̄),

‖θ̃ − θ̄‖ ≤ ‖θ̂ − θ̄‖,

where U(c,θ̄)(y
n
1 ) = ∂

∂θ log(P(c,θ)(yn1 ))|θ=θ̄ is the score statistic at θ̄ and

H(c,θ̃)(y
n
1 ) = ∂2

∂θ∂θT
log(P(c,θ)(yn1 ))|θ=θ̃ is the Hessian matrix at θ̃.

Since E[U(c,θ̄)(Y
n

1 )] =
∫
Xn U(c,θ̄)(y

n
1 )dP(c0,θ0)(yn1 ) = 0 we have by (7.30),

Vn = −1/2(θ̂ − θ̄)T
∫

Xn

H(c,θ̃)(y
n
1 )dP(c0,θ0)(θ̂ − θ̄). (7.31)

For the MLE θ̂ we consider first the score statistic

U(c,θ)(X
n
1 ) =

n∑
t=k0+1

Ũ(c,θ)(X
t
t−k0

) + oP (1),

Ũ(c,θ)(X
t
t−k0

) =
∂

∂θ
log(P(c,θ)(Xt|c(Xt−1

t−k0
)) =

∂

∂θ
log(θ)c(Xt−1

t−k0
),Xt

.

At θ̄ and for the component index wx,(
Ũ(c,θ̄)(x

t
t−k0

)
)
wx

=
1
θ̄wx

1[xt=x,c(x
t−1
t−k0

)=w] −
1

1−
∑|X|−1

r=0 θ̄wr
1[xt=|X|−1,c(xt−1

t−k0
)=w].

It follows that EP(c0,θ0)
[Ũ(c,θ̄)(X

t
t−k0

)] = 0. Then, by the geometric mixing property of Pc0
(see also remark 7.1),

n−1/2
n∑

t=k0+1

Ũ(c,θ̄)(X
t
t−k0

)⇒ N (0, F (c, θ̄)),

F (c, θ̄) =
∞∑

m=−∞
E[Ũ(c,θ̄)(X

0
−k0

)ŨT(c,θ̄)(X
m
m−k0

)]. (7.32)

Note that if τc = τc0 , that is under the true model, then θ̄ = θ0 and we can exploit the
Markov structure so that F (c, θ̄) = E[Ũ(c,θ̄)(X

0
−k0

)Ũ(c,θ̄)(X
0
k0

)T ].
The Hessian matrix in (7.31) is of the form(

H(c,θ)(y
n
1 )
)
w1x1,w2x2

= −δw1w2

n∑
t=k0+1

(δx1x2

1
θ2
w1x1

1[yt=x1,c(y
t−1
t−k0

)=w1] +
1

(1−
∑|X|−1

r=0 θw1r)2
1[yt=|X|−1,c(yt−1

t−k0
)=w1]

+ o(1).
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Thus, the limit of the expected value is given by

J(c, θ̄) = lim
n→∞

n−1

∫
Xn

H(c,θ̄)(y
n
1 )dP(c0,θ0)(y

n
1 )

= −δw1w2(δx1x2

1
θ̄w1x1

+
1

1−
∑|X|−1

r=0 θ̄w1r

)P(c0,θ0)(w1). (7.33)

It is straightforward to show θ̃ = θ̄ + oP (1). We then get for the expression in (7.31),∫
Xn

n−1H(c,θ̃)(y
n
1 )dP(c0,θ0)(y

n
1 ) = J(c, θ̄) + oP (1). (7.34)

Also, by standard arguments for MLE, using (7.32), (7.33) and the mixing property of
Pc0 , we get

n1/2(θ̂ − θ̄)⇒ −J(c, θ̄)−1F (c, θ̄)1/2Z, Z ∼ ND(τc)(0, I). (7.35)

Thus, by (7.31), (7.34) and (7.35) we get

Vn ⇒ 1/2ZTF (c, θ̄)1/2J(c, θ̄)−1F (c, θ̄)1/2Z.

Since θ̄ is a function of Pc0 on τc, and since the quantities F (., .) in (7.32) and J(., .) in
(7.33) implicitly also depend on Pc0 we set Σ(τc, Pc0) = F (c, θ̄)1/2J(c, θ̄)−1F (c, θ̄)1/2. This,
together with (7.30) completes the proof. �

Note that if τc = τc0 , then θ̄ = θ0 and F (c0, θ0) = J(c0, θ0). Then, Σ(τc0 , Pc0) = ID(τc0 )

and Vn ⇒ 1/2χ2
D(τc0 ).

For proving the Theorems in section 4, we first restate a result about the context
algorithm in section 2.1.

Lemma 7.1 Consider a finite realization Xn
1 from Pc0, satisfying (A1) and (A2). Assume

that the cut-off Kn > (2|X|+ 3) log(n) in Step 2 of the context algorithm for constructing
the estimate P̂ĉ0 in (2.6). Then,

(i) PPc0 [ĉ0(.) = c0(.)] = 1 + o(n−1) (n→∞),

(ii) P̂ĉ0(xm1 ) = Pc0(xm1 ) + oP (1) for all xm1 ∈ Xm (m ∈ N),

(iii) On a set An with PPc0 [An]→ 1 (n→∞), P̂ĉ0 satisfies (A1) with κ replaced by κ/2
and (A2).

Proof: The assertions (i) and (ii) are special cases of Theorems 3.1, 5.1 and 5.2 in
Bühlmann and Wyner (1997). Assertion (iii) follows from formula (5.16) in Bühlmann
and Wyner (1997). �

Remark 7.1. Assertion (iii) of Lemma 7.1 implies the geometric φ-mixing property of
P̂ĉ0 with φP̂ĉ0

(k) ≤ (1− κ/2)k on the set An.

Proof of Theorem 4.1. By Lemma 7.1, the bootstrapped process (X∗t )t∈Z ∼ P̂ĉ0 satisfies
again (A1) and (A2) on a set An with P[An] → 1. Therefore, by the same arguments as
in the proof of Theorem 3.1, the decomposition FPE∗L2

(τc) = S∗ + B∗ + V ∗n holds on
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the set An. It remains to show the convergence of S∗, B∗, V ∗n to S, B and C(Pc0 , τc),
respectively.

The convergences S∗ = S+ oP (1) and B∗ = B+ oP (1) follow directly by the finiteness
of τc, τc0 and Lemma 7.1(ii).
By using Lemma 7.1(iii) we get as for analyzing nVn in the proof of Theorem 3.1,

nV ∗n = C(τc, P̂ĉ0) + oP (1) (n→∞).

Using the geometric φ-mixing property of P̂ĉ0 on the set An (see remark 7.1) we obtain
C(τc, P̂ĉ0) = C(τc, Pc0) + oP (1), which then implies nV ∗n = nVn + oP (1). �

Proof of Theorem 4.2. As in the proof of Theorem 4.1 we rely again on Lemma 7.1.
The decomposition FPE∗δ(τc) = S∗ +B∗ + V ∗n follows by the definitions.

By Lemma 7.1(i) and (ii) and the finiteness of τc and τc0 we obtain the convergences
S∗ = S + oP (1) and B∗ = B + oP (1).
Again by Lemma 7.1(i) and (ii) assumption (B1) with Pc0 replaced by P̂ĉ0 holds in prob-
ability. Finally by using Lemma 7.1(iii), which implies the geometric φ-mixing property
for P̂ĉ0 on the set An (see remark 7.1), we get the exponential bound in probability, as for
analyzing Vn in the proof of Theorem 3.2. �

Proof of Theorem 4.3. The decomposition KLI∗(τc)/n = B∗n+V ∗n /n is immediate. The
convergence B∗n = Bn + oP (1) follows by Lemma 7.1(i)-(ii) and the finiteness of τc0 and
τc.
It remains to show the proper convergence for V ∗n . By Lemma 7.1(iii) we can carry out
the same steps as in the proof of Theorem 3.3 to obtain

PP̂ĉ0
[V ∗n ≤ x] = P[1/2ZTΣ(τc, P̂ĉ0)Z ≤ x|P̂ĉ0 ] + oP (1), x ∈ R,

Σ(τc, P̂ĉ0) = F (c, θ̄∗)1/2J(c, θ̄∗)−1F (c, θ̄∗)1/2, (7.36)

with F (., .) as in (7.32) and J(., .) as in (7.33), but with P(ĉ0,θ̂0) instead of P(c0,θ0): here

(θ̄∗)wx = P̂ĉ0(wx)/P̂ĉ0(w), w ∈ τc.
By Lemma 7.1(i)-(ii) we then get

F (c, θ̄∗) = F (c, θ̄) + oP (1),
J(c, θ̄∗) = J(c, θ̄) + oP (1),

and thus Σ(τc, P̂ĉ0) = Σ(τc, Pc0) + oP (1). Together with (7.36), this completes the proof.�

Acknowledgments: I thank Richard Olshen for a helpful discussion about pruning
in tree structured models and Adi Wyner for many general conversations about variable
length Markov chains.
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