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CH-8092 Zürich, Switzerland

May 1997

Key words and phrases: Uses and misuses of statistics, mathematical and applied
statistics, statistical paradigms, interpretation of mathematical results, asymptotics, model
choice, robust statistics, long–range correlations, field ornithology, astronomy, statistics as
subject matter science.

AMS 1991 subject classifications: 62A99, 62-07, 00A69, 92B15, 85A35.

Abstract

By means of several historical examples, it is shown that it does not appear to
be easy to build bridges between rigorous mathematics and reasonable data–analytic
procedures for scientific measurements.

After mentioning of both some positive and some negative aspects of statistics,
a formal framework for statistics is presented which contains the concept formation,
derivation of results, and interpretation of mathematical statistics as three essential
steps. The difficulties especially of interpretation are shown for examples in several
areas of statistics, such as asymptotics and robustness. Some problems of statistics in
two subject matter sciences are discussed, and a summary and outlook are given.

Résumé

Au moyen de plusieurs exemples historiques on démontre qu’il ne semble pas facile
de construire un pont entre les mathématiques rigoureuses et des méthodes raisonables
de l’analyse des données.

Après mentionner quelques aspects positifs comme negatifs de la statistique, on
présente un cadre formel pour la statistique contenant la formation du concept, la
dérivation des résultats et l’interprétation de la statistique mathématique en trois
pas essentiels. Les difficultés de l’interprétation en particulier sont exposées pour des
exemples dans des domaines diverses de statistique comme l’analyse asymptotique
et la robustesse. On discute quelque problèmes de la statistique en deux sciences
spécifiques et présente un sommaire et une perspective.

1 Introduction

This paper is a written version of the talk given on August 16, 1996 at the Symposium on
Statistics and the Sciences in Halifax, beautifully organised by Luisa Fernholz, Chris Field
and David Tyler with the aid of the Minerva Foundation and Dalhousie University. After
stressing the positive sides of statistics and its interaction with the sciences, as they were
also nicely shown at this symposium, I analyze in more detail various difficulties statistics
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faces, partly because of its unique position between pure mathematics and scientific data.
Four areas of statistics are singled out to describe in more detail some problems of appli-
cations of statistics and of the dialog between statistics and the sciences. Some special
remarks pertain to statistics and field ornithology, and to statistics and astronomy, before
a data–analytic outlook is given.

To stress astronomy seems especially appropriate in honor of a genius loci, Simon
Newcomb (1835–1909), a son of Nova Scotia, born in Wallace, who was the leading Amer-
ican astronomer of his time, and who was at the same time a most creative statistician,
giving some of the deepest analyses of statistical errors in actual scientific data I know
of. In his pioneering work, he described at length the “semisystematic errors” (the term
he used; an important kind of violation of the independence assumption) occurring in
real data (Newcomb 1895); and he proposed already mixtures of normals to model the
deviations from normality occurring in real data (Newcomb 1886). He thus foreshadowed
theories which were developed in statistics only about 80 years later, and his work can be
considered a prime example for a connection on a very deep level between statistics and
the sciences.

2 Statistics and the sciences: A challenge for statisticians

This subtitle was suggested by Luisa Fernholz; and it very appropriately summarizes the
beauty and attraction which statistics has for many of us statisticians and data ana-
lysts. We find many interesting problems to work on, and we get into contacts with many
different scientific fields (which puts high demands on interdisciplinary thinking and com-
municating for both sides). We are able to make helpful and often needed contributions
to other fields, which means we can do service to a greater community, besides working
for ourselves. And if our eyes are open, we can find all kinds of versatile and difficult
challenges for research and problem–solving, for thinking and intuition, anywhere on the
full scale between pure mathematics and data analysis.

In fact, in my extensive former consulting work, mainly for biologists, I rarely found
a problem which could be satisfactorily dealt with by mere known statistical routine
methods. Most consulting problems required some ad hoc modifications or extrapolations
of existing methods or even the sketchy and heuristic (because of lack of time) development
of new methods. Many of these could in principle be worked out mathematically to new
statistical methods and theories. A collection of examples, some in reasonable detail, some
only sketched, are given in Hampel (1987b).

I might also mention that one of the reasons that brought me into statistics was my
fascination with the statistical problems arising out of my early work in field ornithology,
especially bird migration (cf. also Section 9).

My statistical ideas in ornithology range from a simple but basic and general model to
more sophisticated special ones (cf. Hampel 1987b, p. 109 ff). In recent years I noticed
that one of the vague new concepts I had arrived at — but never worked out — while
pondering over my data seems to be also the basic idea of the “possibility theory” (“théorie
des possibilités”) by Dubois and Prade (1988), which shows how deep thinking in data
analysis can lead to new horizons.

Ironically, my main sophisticated model was much easier accepted by ornithologists
than my simple one. This points to the possibility of nontrivial challenges in communica-
tion between statisticians and subject matter scientists (cf. Section 9 below).

Returning to sciences in general, we notice that many of our greatest statisticians were
simultaneously working in some science (e.g. Gauss and Newcomb in astronomy, Gosset
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(“Student”) in chemistry, Fisher in genetics, Jeffreys in geophysics, to mention a few),
and also quite a few of our best contemporary data analysts (including J. W. Tukey) have
in addition studied some field of science. I strongly believe this is no accident. Statistics
is most alive when it reacts to the needs of applications. To be sure, mathematical (and
philosophical) clarification and extension is also needed, but when it loses the connection to
applications, it is in danger of becoming sterile. As Tukey said, “Far better an approximate
answer to the right question, which is often vague, than an exact answer to the wrong
question, which can always be made precise.”

If we look at statistics as a whole, we see that it is not only useful and partly necessary
in the various sciences, but that it is an integrated and in some areas necessary part of
our civilization. Fields like quality control in mass production, medical drug testing, and
survey sampling show this very clearly. Compare also Wallis and Roberts (1956), Tanur
et al., eds. (1989) or Atkinson and Fienberg, eds. (1985).

3 The other side of statistics

Besides all its impressive successes, statistics also has another, darker side, and not quite
accidentally often has a bad reputation. Let us briefly look at some of its various facets.

“Students frequently view statistics as the worst course taken in college” (Hogg 1991,
Iman 1994).

The field of statistics is in a “crisis,” and the subject has become “irrelevant to much
of scientific enquiry” (Box 1995).

Many physicists look with disdain upon statistics and comment, for example, on the
standard error of the mean: “It is merely a statistical result and has no correspondence
with physical reality” (Jeffreys (1939) 1961, p. 301; p. 270). Compare also Section 8.

Statistics, overall, is used most prominently, and most superficially, in the “least sci-
entific” fields of research (such as medicine, psychology, sociology.....). One may wonder
about the reasons. (To be sure, there is also excellent statistical work in these fields; I am
talking about an overall impression.)

Even if statistics has played a major (auxiliary) role in scientific progress (as it has in
astronomy, cf. Section 10, or geology), this role is usually downplayed or ignored. Why?

Misuses (“How to lie with statistics”) and misunderstandings, and plain lack of under-
standing of statistics (“statistical illiteracy”) are so widespread they have become prover-
bial and need no further comment here (cf. also Huff 1954, Bibby 1983, Dewdney 1993).

Statistics is still a field with no agreed–upon foundations; apart from smaller groups,
two main schools fight back and forth over centuries and do not seem to get together, nor
does anyone of them offer a complete solution.

Modern outgrowths of statistics use different names (“artificial intelligence,” “neural
networks,” “image analysis,” “belief function theory”), and the suggestive term “informa-
tique” in French or “Informatik” in German is occupied by computer science, which deals
with storing and processing, but not directly with obtaining information. One may also
think about the intended meaning(s) and actual uses of “data analysis” compared with
“applied statistics.”

A perhaps minor but bothersome point is that clinical trials (to my knowledge the
only field of application where statisticians are required by law) are considered unethical
by statisticians with different viewpoints on foundations.

Several ones of these aspects are of course connected.
I think we have to face these facts, observations, opinions, beliefs, convictions, experi-

ences ..., as well as the positive ones about statistics, in order to get a more balanced view,
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and to avoid that neglected and repressed aspects rise unexpectedly “out of the shadow”
and spoil our efforts towards better statistics.

4 Statistics between pure mathematics and the sciences

Besides difficulties which may occur, and sometimes do occur, also in other fields of re-
search, one specific problem for statistics is its peculiar situation in the field of tension
between the rigor of pure mathematics and the need for reasonable pragmatic solutions in
the context of complicated and not fully formalizable “real life” situations in the fields of
application.

As a framework for discussing this situation, I suggest the following 4–point, 3–step
scheme. First, there is a vague, ill–defined but clearly existent data–analytic problem in
some (or all) field(s) of application. A first step towards its solution is its mathemat-
ical formalization. This step is rare (and not very often needed), but very important,
as it defines the new mathematical concepts and quality criteria which are then used,
routinely and often uncritically, by mathematicians (mathematical statisticians) in their
step (the second step) from a well–defined mathematical problem or paradigm to rigorous
mathematical solutions. Mathematically well–chosen concepts (whether well applicable
or not) can give rise to large theories in mathematical statistics, and clearly most of the
mathematics–oriented work and publishing activity in statistics is in this second step.

But in observing statistics over the decades, I became more and more convinced that we
often explicitly need a third step: the interpretation of the mathematical solutions in the
light of real data and of the situations which first stimulated the preceding investigations.
Only this interpretation shows to what extent a mathematically optimal solution derived
under rigorously specified conditions is also a useful practical solution under the different
conditions of real data in scientific research. I think this step, usually overlooked, is often
most sorely needed. Interestingly, it is also missing as an explicit step in the short but
worthwhile related paper by Huber (1975), though it is indirectly briefly alluded to in the
paragraph on p. 84/85 (loc.cit.).

An example for the 3 steps is provided by the (“classical”) robustness problem (cf. also
Section 7). In the beginning, there was just a vague problem of the stability of statistical
procedures under deviations from idealized modelling assumptions. Then more and more
isolated examples became known showing its urgency. But only with the coining of pre-
cise robustness concepts, starting in 1964, began fruitful systematic research, building a
formal robustness theory, which allowed a broad and encompassing understanding of the
problem. The ensuing research was carried away by its own momentum, and I think it is
precisely because of lack of interpretation and understanding that at some time ridiculously
many (mostly superfluous) robust estimates of location were included into large computer
packages, while strongly needed robust regression estimators were not. The robustness ex-
ample also shows that mathematical optimality is not always practical optimality: hardly
anybody uses a tanh-estimator (which is in some ways “optimally robust”), but Tukey’s
biweight or Hampel’s 3–part redescenders are rightly often used although they possess no
(or no important) optimality property. The mathematical robustness theory has led both
to the development of new robust procedures, and to a much better and deeper under-
standing of the properties of old, more or less robust, procedures. Interestingly, this was
not only done by interpretation of and comparison with optimal robust procedures, but
sometimes directly by the application of the concepts of robustness, as with the clarifi-
cation of the behavior of rules for rejection of outliers by means of the breakdown point
(which needed only a little mathematical research to work out the breakdown points).
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This suggests in addition sometimes a direct connection from point 2 to point 4, largely
skipping step 2.

Besides the general framework described above, two alternative schemes seem some-
times possible or even necessary (partly in combination with the first one or with each
other). One is to go from the vague applied problem to the shortcut of non–rigorous
mathematics and heuristics, which then may lead to semi–intuitive solutions. These then
need again an intuitive interpretation in the light of real data. This shortcut, with its
danger of making formal mistakes (the only ones that count in pure mathematics), needs
a good mathematical intuition which seems to be not very common. On the other hand,
practical solutions cannot always wait for a full–fledged mathematical theory (mathemati-
cians themselves tell jokes about this); and for example the Dirac delta function, invented
by physicists with a good grasp of mathematics, was first laughed at by mathematicians
(it still is), and then they built a rigorous theory based on its idea.

Another scheme works via a computer simulation, making statistics partly an experi-
mental science. However, already for the Monte Carlo setup, we need at least some models
or theories. Next, the computer runs yield many isolated numbers, and it is often a non-
trivial task to obtain meaningful patterns by a purely empirical analysis which then allow
a limited extrapolation beyond the situations tried. The full power of a Monte Carlo study
comes when it is combined with a good theory. The analysis in the light of the theory
allows a much deeper understanding of the observed patterns, as well as the discovery of
many new ones, and it permits a much broader extrapolation (cf. also the remarks on the
study in Andrews et al. 1972 below). Again, the last step needed is the interpretation of
what has been learned for the purposes of real life applications.

5 The problems of asymptotic theory

This section, as well as some of the following ones, describe in more detail some difficulties
of interpreting mathematical results in several different areas.

The first one chosen is asymptotics. It comprises a large part of mathematical statistics,
probably with the largest amount of applications (just think of asymptotic normality), and
it can be eminently useful for practical statistics.

However, taken by itself, it is (usually) totally irrelevant. It only tells us what happens
if something, usually some sample size n, “goes to infinity”; it does not tell us anything
for any fixed finite n. Yet, in practice we need answers for finite n. It is then suggested
that asymptotic theory provides, or may provide, approximations for finite n, but which n
is big enough so that the approximation is sufficiently accurate for the purpose at hand?
n = 20? 100? 1000? one million? 4? 1? All these answers can be true under specific
circumstances, but my point is that the purely mathematical theory alone does not tell us
which one.

I think that (the few cases with usable strict error bounds excepted) we need either
intuition and insight into the mathematical formalism (a “feeling” for the formulas and
structures used), and/or the underpinning by means of a Monte Carlo study or other
(exact or sufficiently accurate) finite sample results, in order to “anchor” the asymptotic
results derived at fleeting infinity in the finite realm. Best would be a combination of all
three approaches, as done in some, but not all, analyses of the large Monte Carlo study
in Andrews et al. (1972; cf. also Hampel 1995) which would not have succeeded without
the combination of powerful asymptotic theory, deep intuition about its interpretation
and application, and penetrating analysis of the many finite sample results. Mathematical
intuition is possible, on various levels of mathematical sophistication (cf. Cuthbert Daniel’s
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admirable intuition), but it is normally not cultivated. Apparently most mathematical
statisticians have learned to do proofs, but cannot understand in a deeper sense what they
have achieved, and what not.

A rather extreme example of lack of mathematical feeling is the old “large deviations”
theory as described, for example, in Feller (1966). According to L. LeCam, it was con-
sidered the “messiest area of mathematical statistics” at least up to the sixties. Now the
proofs were all mathematically correct, but (rare?) numerical applications for small and
medium sample sizes were extremely bad. One needed exorbitant sample sizes (as they
sometimes occur in physics, like statistical mechanics, for example) to get good results.

The reasons, as I see them, are the following: Experience shows that in what I consider
the most natural asymptotic expansion, one needs the first two terms in practice (and
hardly more). Using the first term only is (even literally) like forcing every straight
line through the origin; but it is common intuitive knowledge (based on a mathematical
background) that one can approximate any sufficiently smooth curve locally by a (general!)
straight line. In traditional large deviations theory, one has taken the first term only, and
then expanded it into another infinite sequence (in a different “direction”), of which the
first, or the first few terms were to be used. From the foregoing follows that even the full
infinite sequence would give very bad results, since all the other relevant terms had been
“lost” before on the rather peculiar path towards infinity.

It is interesting to observe that the first term of the saddlepoint approximation, a
specific technique for such asymptotic results which has become quite popular in statistics
fairly recently, corresponds essentially to the first two terms in the basic expansion men-
tioned above. Only essentially, because the first term of the saddlepoint approximation
contains in addition an artificial normalisation, which is the best one can do without using
any more information, but which is often abandoned by users of the saddlepoint technique
themselves in favor of an empirical normalisation (or a higher order expansion). The full
saddlepoint expansion contains also an expansion of an exponential with small exponent
into one plus a sum, and although the difference is slight, this expansion empirically leads
again to a slightly worse approximation.

There exist a number of further, different insights into this realm (including how to
resolve the existence problem for the moment generating function very generally). For
a publication, describing also what was said about large deviations (besides many new
mathematical facts), see Field and Hampel (1982). But apparently many specialists on
the saddlepoint technique did not notice, or not care about such nonmathematical trivia;
the publication of this paper was delayed by four years, outlooks on possible future research
were eliminated by the editor, and a reviewer described the paper, in the context of other
papers on the saddlepoint method, by something like: “More of the same.” This may
or may not have been an exception, but it is not the only example to show that papers
which go beyond mathematical formalism into a deeper interpretation of mathematics may
encounter special difficulties.

Another example for problems with the interpretation of asymptotics are Bayes proce-
dures. True, usually they are “asymptotically” equivalent to maximum likelihood proce-
dures and hence “asymptotically optimal”; but for any fixed n they may be arbitrarily far
away from their “asymptotic” behavior. Their convergence is not uniform with respect to
the prior distribution. Hence, strictly theoretically speaking, any Bayes solution is worth-
less for any fixed n (unless, of course, one believes in the assumed prior, as most Bayesians
pretend to do). I suggest that in order to use asymptotic theory for approximating the
behavior of a Bayes estimator for a given fixed n, one should embed the estimator into
a different sequence of estimators which is more informative. For example, some simple
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Bayes estimators are of the form Xn · n/(n+m) + c ·m/(n+m), with c and m known
and fixed. “Asymptotically,” for n → ∞, these estimators behave like Xn, but for the
given n, it would be much more instructive to use whatever asymptotic approximation
for the distribution of Xn and plug it into this formula; and the simplest and most in-
formative sequence of estimators which “crosses” the sequence of Bayes estimators at this
point, is aXn + b, with a and b fixed and chosen to match the above formula for the given
n. Of course, mathematical statisticians may claim that they are not interested in the
behavior of the sequence of estimators for any fixed n, only in their “limit” behavior (and
they have a right to do so, as a first step (!), in their search for simple and interpretable
(!) structures); but ignoring the path towards infinity totally can lead to misleading,
bewildering, and stupid claims, as in the discussion of a certain type of “superefficient”
estimators (e.g. for the normal distribution) where, by the way, Fisher’s vague intuition
about ‘‘consistent” estimators appears to have been at least as important as the rigor-
ous mathematical formalism (and optimal is the combination of both). Other examples
where there are several, more or less natural (or else, practical) ways of embedding a given
estimator into sequences going to infinity, are α–trimmed and α–Winsorized means, and
various rules for the rejection of outliers (cf., e.g., Hampel 1985 for some special forms of
“asymptotic” argument).

We see that in practical applications of asymptotic theory, we have not only the ques-
tion: How to extrapolate back from infinity to a given n, and what is the accuracy of that
extrapolation? We also have the big question: How to embed a given practical situation
(for fixed n) reasonably and meaningfully into one of the many asymptotic sequences lead-
ing through it to infinity? Again, intuition for mathematical formalisms is needed, not
merely mastery of mathematical proof techniques, if the results of mathematical theory
are to be fruitful for applications.

6 The problem of “specification” or model choice

This problem is perhaps farther away from any satisfactory theory, especially from any
good and encompassing mathematical theory, than most other problems in applied statis-
tics. We are led to such innocuous–looking questions as: What is a “simple” model? What
is a “good” model? I don’t know any general answers.

It is interesting to note that Fisher left the problem of “specification,” as he called it,
explicitly to the practical statistician (an attitude which looks somewhat evasive to me).

It is true that there are some mathematical theories solving parts of the problem
area. In particular, there are many methods for comparing models within a given set of
hierarchically structured models. But even then, there are questions about whether to
take a fixed subset of variables fully, whether to mix variables, to transform variables, or
to introduce new, “latent” variables, and whether to do the same or different things for
different purposes (parameter estimation and testing, prediction in various contexts).

On a higher level are the methods based on information theory (cf., e.g., Rissanen’s
work) to describe the quality of any parametric model, both with regard to the goodness
of its fit and to the complexity or simplicity of its form. I think this may be a fruitful road,
but one problem I see is the arbitrariness in the choice of the program used to describe
the model and the data. This arbitrariness seems to be related to the problem in the
foundations of probability of describing the degree of randomness or nonrandomness of a
finite sequence of, for example, zeroes and ones.

Another problem is that almost all models are only approximate, and that one needs
to incorporate this approximate character into information theory. Some research in this
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direction does already exist. In a different framework, this problem of inaccurate models
has been treated and largely solved by robustness theory (see Section 7 below).

A further complication is that a good model choice is determined not only by the
data (often in several iterations), but also by experience with similar data (e.g. “borrow-
ing strength”), by general statistical experience (about which models tend to be useful),
and by the background knowledge of the subject matter science, including the existing
formalizations and theories about these and related phenomena.

It seems difficult to formalize the intuition about model choice that exists already in
applied statistics. Not only are there statements like: “All models are wrong; but some
are more useful than others.” But there is also experience that the “best” model (which is
so “simple” that it allows also extrapolation for “distant” populations or new situations)
is often not among the ones statistically compatible with the data at hand, but rather
“significantly wrong”! I believe this has to do with the “long–range correlations” in virtu-
ally all data (and hence models, if not explicitly incorporated), with the “semisystematic”
errors and heterogeneities somehow due to slowly changing background conditions, which
eventually lead all our models based on independence and short–term correlations astray
(cf. Section 8 below).

Given a data set, we have to ask up to what extent it supports a (“tentatively enter-
tained”) model; once we arrived at a model, we have to ask up to what extent it describes
real data. In data analysis, we ought to do “fitting equations to data” and not the other
way around.

7 “Classical” robustness theory

Robustness theory studies the deviations from exact parametric models and their conse-
quences. It considers both the deviations from the assumed marginal distributions (“clas-
sical” robustness theory) and from the assumed correlation structure, violation of the
normality and of the independence assumption being the most important special cases.
It may be (and might have been) called the stability theory of statistical procedures; but
unlike stability theories in other parts of applied mathematics, it met with much resistance
among parts of the statistical community.

One (minor) problem was the introduction of a new paradigm. I still remember how
in the traditional way of doing mathematical statistics there was simply no space for a full
neighborhood of potentially true distributions (in a way, they were “beyond infinity”); and
I also remember a talk on differential geometry in statistics where the speaker missed one
little but decisive step; namely that he had complete freedom to choose the most beautiful
and elegant probability distributions outside the parametric model on which they where
fixed.

Another problem was probably a certain prejudice, an attitude that “we don’t need all
this” because the improvements brought by robustness theory were deemed unimportant.
Apparently rather influential was a paper by Cox and Hinkley (1968) which on the basis
of facts given by Jeffreys created the impression that least squares loses in practice usually
less than 10% efficiency under nonnormality (cf., e.g., McCullagh and Nelder 1983) with-
out ever making such a statement, while Jeffreys’ facts lead to the opposite conclusion.
Another misleading paper was Stigler (1977) which contained the basic conceptual flaw
of ignoring systematic and semisystematic errors and their consequences; when the flaw
was pointed out in the discussion of the paper, the author ended the discussion with a
mathematical error (cf. Hampel et al. 1986, p. 31f). Some reactions were obviously all
too human, and they were facilitated by the facts that models cannot be fully trusted, and
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that all empirical statistical results contain random variability, so that it is hard to assess
reliably the quality of any statistical procedure in practice (as opposed to other parts of
mathematics).

Again another problem was misinterpretation of mathematical theorems. The Gauss–
Markov theorem says that least squares estimates are optimal among all linear, unbiased
estimates, even without any assumption of normality; it neglects to say that outside a very
small neighborhood of the normal distribution, all linear estimates are rather inefficient
— a fact known and stressed already by Fisher (1922) in a slightly different context. An
example where empirical evidence and mathematical reasoning seemed to clash was the
dispute between Fisher (1920) and Eddington (1914, and footnote in Fisher, loc.cit.) on the
better scale estimator: Fisher proved that under strict normality the standard deviation
was optimal, while Eddington maintained that in his astronomical data the mean deviation
was empirically better. Interestingly, the mean deviation, not the standard deviation, all
but disappeared from statistical practice, apparently showing a stronger belief in, and
reliance in practice on isolated pieces of mathematical theory proved under unwarranted
assumptions, than on empirical facts and observations. The reconciliation of both lines
of thought (which always ought to exist, of course) came much later with the work by
Tukey (1960) and Huber (1981) who showed also mathematically that Eddington was in
fact right (under more realistic models than Fisher’s), although neither estimator should
now be used in practice (while the standard deviation still plays an important theoretical
background role).

Practitioners of statistics have noticed for more than one and a half centuries that
even high–quality measurement data are not exactly normally distributed, but typically
longer–tailed. The tacit hope that small deviations would have only small effects on
statistical procedures was shattered by Tukey (1960). Practitioners also know that real
data contain gross errors or blunders; in fact, for scientific routine data (i.e. data not taken
with special care), 1–10% gross errors are the rule rather than the exception and should
be faced realistically (some fields, like medicine, tend to have even higher rates of gross
errors). Gross errors often show up as outliers, but not all outliers are gross errors: some
may be by far the most valuable observations of the data set, even worth a scientific prize
or a patent. Statistical rules for rejection of outliers (better: for separating the outliers
from the rest) were partly so bad that they could not even reject a single distant outlier,
and the mathematical theory about them was so limited in scope as to be pretty useless in
practice. The theory of robustness offers a deeper understanding of the properties of these
rules, better rejection rules, and better alternatives to rejection rules (Hampel 1985); but
many statisticians were rather reluctant to accept the new tools.

For more details on robust statistics, including more discussions of misunderstandings,
see for example the books by Huber (1981) and Hampel et al. (1986). The latter book
contains a whole subchapter (8.2), with further references, on misapprehensions of robust-
ness, including more than 5 pages just on misunderstandings of Huber’s (1964) pioneering
first paper in the field, reprinted with an introduction (also for applied statisticians) in
Kotz and Johnson, eds. (1992).

8 Semisystematic errors, and why statistics still sometimes
works

There is hardly any paradigm more deeply entrenched in statistical theory and usage
than that of independence. Virtually every statistics book starts with the assumption of
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“independent identically distributed” random variables, observations, measurement errors,
or the like, and hardly any book questions this assumption seriously, except in contexts
like time series analysis where some short–range correlations are obvious. But the truth is
that really independent observations practically do not exist, and that even measurement
errors of high–quality data in the hard sciences like physics, astronomy, and chemistry
are not only dependent, but even long–range dependent (which means they cannot be
modelled by any strongly mixing process such as ARMA processes).

This fact was qualitatively known to eminent statisticians, and published by them, for
over a century. The first reference I know is Simon Newcomb (1895) who gave a penetrating
analysis of astronomical measurement errors. Gosset (“Student” 1927) gave a similarly
deep analysis of the structure of errors in chemistry. Karl Pearson (1902) and some of his
co–workers did extensive empirical investigations with pseudo–astronomical observations
made by them; “K.P.” found not only qualitatively long–range correlations in time for
each observer and tried to model them by ad hoc models; he also discovered surprising
cross-correlations between different observers which to my knowledge later have never been
studied again. Jeffreys (1939) reanalyzed these and other series and in addition to the
long–range correlations in time found a strong negative correlation between the intensity
of the correlations and the long–tailedness of the data, another clue that to my knowledge
has not yet been pursued further.

Yet these studies (and a few others) were completely ignored by the mainstream of
statistics. People continued (and mostly still continue) to believe in the “declaration of
independence” (Box et al. 1978) instead of “hunting out the real uncertainty” and noticing
“how σ/

√
n can mislead” (Mosteller and Tukey 1977). This attitude dominates statistics

virtually uncontested, although also in our times, top applied statisticians like Cuthbert
Daniel (cf. Daniel and Wood 1980, and the two books just cited), and in all probability
also experienced and realistic subject matter scientists, are very much aware of at least
the qualitative unsuspected correlation problem.

The mathematical modelling of long–range correlations came rather late. It was
B. B. Mandelbrot who in a series of papers around the late sixties reanalyzed the Nile
data (studied by Hurst for the construction of the Aswan Dam), which had puzzled even
top probabilists like Feller, and showed that despite their “nonstationary” looks, they could
be modelled by a stationary though long–range dependent process, namely a self–similar
process invented much earlier in an abstract setting by Kolmogorov (1940); moreover he
showed that not only hydrological, but virtually all geophysical processes he studied (river
flows, geological layers, tree ring indices, annual precipitations, earthquake frequencies ...)
are long–range correlated (Mandelbrot and Wallis 1969).

There was a big debate, particularly in hydrology, pro and against Mandelbrot’s model.
Now I do not think that the model of self–similar processes is the only reasonable model
(e.g. fractional ARIMA processes, invented later, behave very similarly), and if reasons
for nonstationarity are known, they can clearly improve the model; but I do think that
any model which does not account for the features of long-range correlations observed in
real data is doomed to failure in the long run.

Mandelbrot’s statistical tools were still rather coarse. They were optimized and ex-
panded in our group (Graf et al. 1984; Beran 1989, 1992), and applied not only to further
geophysical series (such as the famous Arosa ozone series), but also to pure measurement
series in chemistry (taken from Student 1927) and physics (about 3000 measurements of
the velocity of light, taken from Michelson et al. 1935; sets of hundreds of measurements
of the 1 kg check standard weight done with utmost accuracy by the National Bureau
of Standards in Washington, D.C.). Even those segments that looked “under statistical
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control” (Shewhart) were not independent, but highly significantly long–range correlated.
Why, is still a mystery to me, although a part of the phenomenon might be explained by
the discussions in Newcomb (1895) and Student (1927): it just appears to be a fact of life.

The consequences of long–correlation models such as self–similar processes are serious.
Apparent “trends” and “cycles” (“hidden periodicities”) may just be artefacts of such a
process. Naive estimates of the variance are highly biased and inefficient. The variance
of the mean of a sample of size n goes down to zero at a slower rate than 1/n (like n−α,
with α anywhere between zero and one, depending on the particular series), and hence
the standard error of the mean and the lengths of confidence intervals and of acceptance
regions of tests are wrong by a factor tending to infinity with n. For example, for Student’s
n = 135 measurements, the true variance of the mean is already about 20 times the
variance derived under the independence assumption commonly used for such data. For
more details, see Hampel et al. (1986, Ch. 8.1), and Hampel (1987a).

The reaction of statisticians to these facts can be quite interesting. I once was told
about the reaction to an invited talk on this topic for a broad range of statisticians. The
first day, the audience was shocked. The next day, they tried to suppress and forget it,
and do “business as usual.”

Now, in view of the above facts, we must wonder why statistics sometimes works, as it
does, according to the folklore of applied statistics. The answer is very interesting, and in
full accordance with experience and intuition of applied statistics. Statistics does not work,
except with rather small samples, for absolute constants (in accordance with the “skeptical
physicist” of Jeffreys 1939, cf. also Youden 1972). But it does work (in a limited sense) for
contrasts under well–mixed experimental conditions (Künsch et al. 1993), because then
the first-order effects of long–range correlations cancel out, and the levels of confidence
intervals and tests are approximately correct. Still, there may be large losses of power and
efficiency; but these can in turn be greatly reduced by using small blocks of experimental
units. Now, areas like regression and analysis of variance are generally counted as main
success stories of applied statistics ; but slopes in regression and effects in ANOVA are
prime examples of contrasts (and blocking is a highly recommended tool). On the other
hand, intercept and grand mean are not contrasts, and it is a remarkably wise custom,
now deeply justified, that they are left out of the usual analysis of variance table. Despite
these results, which create a beautiful bridge between deep intuition of applied statistics
and high–level mathematics and which would appear to be of rather basic importance for
all of statistics (as they investigate a decently realistic model of “random errors”), it was
very hard to get the paper published.

It is amazing to see how long the tradition of mathematical statistics, as reflected
in all statistical textbooks, has ignored basic knowledge of the tradition of good applied
statistics, being either not able or not willing to model salient features of statistical data
and, worse, not being willing to admit that there is an open problem, thereby discrediting
statistics as a science in the eyes of experienced subject matter scientists.

9 Some personal experiences in field ornithology

It is not only statisticians who may have problems understanding statistics. When I now
mention some personal experiences with field ornithology, the “scientia amabilis” with
which I had rather early contacts, I hasten to stress that there is also excellent statistical
work in this field, for example the first large bird survey of a whole country (Merikallio
1958) with its blend of well–used statistical techniques and profound ornithological intu-
ition and experience. My experiences may not be at all representative, but I mention them
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as examples of what might happen, presumably also in other fields.
A basic problem was that the ornithologists I spoke to essentially could not imagine

that a bird might be in a certain place even though it was not observed (simply because
there was no observer there), and that one could genuinely estimate the number of un-
observed birds from the number of observed birds, given a suitable data base which in
addition to the usual data included nothing more than an “excursion list,” or a descrip-
tion of how well a certain area was covered at what times. Many amazing differences in
bird occurrences could largely be explained by the different intensities of bird watching (as
well as different abilities to identify birds in some cases), and a “rare bird,” that elusive
romantic “blue flower” of many hobby ornithologists, became just a bird (— how sober!
—) with low probability of encounter (“Antreff–Wahrscheinlichkeit”, cf. Hampel 1965,
1966). Seeming contradictions just dissolved, like the fact that we hardly ever saw wild
swans on a certain lake while a permanent resident claimed to see them practically every
winter; we just had to count the number of excursions we had done around this time of
year. To extrapolate from the observed to the unobserved would seem to be one of the
main tasks of statistics.

Some years later, I learned what modern “scientific” field ornithology was supposed
to be. In order to solve the problem of gaps in the excursion list, only daily observations
for a considerable length of time were accepted and evaluated, the great majority of data
(obtained with considerable enthusiasm, and containing lots of precious information) was
discarded as being “scientifically useless.” Instead of adapting the method of evaluation
to the data available, the ornithologists were forced to adapt their behavior (for the sake
of “science”) to the most primitive evaluation method which was the only one considered
or known, or else throw their data away. To be sure, there are some advantages in having
long uninterrupted sequences of data, and it may have been good to encourage people to
obtain them where feasible, but there was no need to waste most available information.
As a side point, averages were computed over rather unintuitive but equally long periods
of time, instead of, for example, approximate thirds of months, which just would have
required weighted averages with slightly nonconstant weights for further evaluation.

Again later, I heard that a big fuss and many publications were made about the so–
called “weekend effect,” namely the fact that most rare birds show up on weekends. With
something like an excursion list, the weekend effect would simply disappear (or else what
small — positive or negative — effects would remain would be due to rather subtle effects,
such as different average qualities and eagerness of weekday and weekend observers, and
sometimes to different disturbance of the birds).

I still think it would be a great statistical challenge to try to model bird migration
quantitatively (the numbers, routes, speeds, and resting patterns of birds), using among
several other types of data the large numbers of recoveries of banded birds and counting
them not only absolutely, as has been commonly done, but trying to estimate (at first
relatively, then crudely, then perhaps using nonparametric smoothing techniques) the
chance that a banded bird in a given locality or area is caught again, shot or found, and
reported to a bird observatory. Already before that step, relative frequencies of ecologically
similar species could be estimated for different areas. We might have to acknowledge how
little we still know quantitatively, and might have to cope with systematic errors, large
random variability, long–range correlations in time and space, mavericks, gross errors, and
possibly trends and changing patterns; but statistics, used properly, would be a central
tool for bringing light from the known into the unknown.

Now the problem is not that statistics is not used in field ornithology. Already during
my active time in the sixties, statistical methods were proposed to be used (in order to be
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“modern” and “scientific”), but the problem was that they were just superficially super-
imposed on the ornithological data, without exploring what kind of evaluation the data
themselves were calling for. (For examples, though in very different fields, of what I mean
by fitting equations to data, and not fitting data to equations and preconceived models, see
the books by Daniel and Wood 1980 and Daniel 1976.) Clearly, most ornithologists had no
intuition about the underlying assumptions and the strengths and limitations of statistical
methods, and statisticians in general had no or little understanding of the peculiarities
and rich and sophisticated background of ornithological data. It needs high competence
in both fields, or at least a broad overlap of competences of two scientists somewhere in
between, with a good ability to communicate, in order to do really good applications of
statistics in a subject matter science.

10 Statistics and astronomy

Statistics and astronomy have very old and close ties. One of the historical roots of
statistics, the theory of errors (“Fehler- und Ausgleichsrechnung”), goes back to astronomy
and geodesy. Statistics was not only useful, but a necessary and central tool for all
astronomy outside a small neighborhood of the solar system, including all we know, or
believe to know, about extragalactic astronomy, the structure of the universe, cosmology,
the “big bang,” and other related theories. I once read the fitting description that the
astronomical view of the world has been obtained by putting pyramid after pyramid on
top of each other, each pyramid resting on its tip; and all but the first pyramid (direct
parallaxes of neighboring stars) are based on inaccurate and laborious statistics, from the
proper motions of nearby stars to the period–luminosity relationship of delta Cephei–type
variable stars and the redshift–distance law of galaxies. A nice description of this bold
construction is given in Rowan–Robinson (1985). Yet I have the impression that in most
popular accounts of astronomy, the central role of statistics is downplayed or not even
mentioned, and astronomers themselves seem to push it aside (as a necessary nuisance?
or as a scientifically uninteresting tool? or what else?).

By the way, I also get the impression that quite a bit of the cumbersome and perhaps
boring statistical groundwork in astronomy was done by women, while most of the fame
went to men who drew further conclusions from their findings. At least I read rarely
anything about Annie Jump Cannon and Antonia Maury who laid the foundations for the
famous Hertzsprung–Russell diagram, or about Henrietta Swan Leavitt who discovered
the statistical period–luminosity relation of Cepheid variables (cf., e.g., Rowan–Robinson
1985). One might speculate whether in some sense both women and statistics are the Cin-
derella of sciences, doing a lot of the necessary “dirty” work without too much recognition.

It may be that connections between statistics and astronomy are presently again in-
creasing. For example, there are two meetings on both topics at the I.S.I. conference 1997
in Istanbul, and there is also a recent book with the programmatic title “Astrostatistics”
(Babu and Feigelson 1996). In this book, both fields are presented to scientists of the other
field, with a lot of potentially useful and stimulating information. However, in glancing
through the book, I got the impression that again statistical methods are looking for data
to be applied to, rather than being developed for the needs of the data. This may be
very helpful to some extent, but it can also lead to the type of superficial statistics that
is rightly despised by good scientists. On the other hand, the book also points out many
needs of astronomical data, which should and hopefully will stimulate statistical research.
The mathematical–logical arguments in the book are usually of the fragmentary type com-
monly found in statistics books, giving isolated islands of rigorous conclusions based on
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rigorous assumptions without embedding them in the ocean of experience and background
knowledge concerning the application of mathematical models to the real world. This
makes most conclusions only half–truths (or partial truths) in applications. For example,
if the sentence “The entire [parametric] analysis will be a futile exercise if the underlying
model is incorrect” (loc.cit., p. 85) were taken at face value, the authors could have spared
writing large parts of the book (because parametric models are practically never correct);
but quite rightly they did write them, because the mathematical dichotomy “correct –
incorrect” is not appropriate in practice. Or the statement “There is no theoretical reason
why one should prefer least squares method over methods that minimize sum of absolute
distances or some other metric distances” (loc.cit., p. 60) floats around in isolation and
shows the helplessness of purely mathematical reasoning regarding applications; a lot can
be said about this topic, combining theory, insight, and experience (cf. also Section 7).
Some minor surprises for me were that at cursory glancing through the book I did not
see Simon Newcomb mentioned, one of the astronomers who thought most deeply about
the connection between astronomy and statistics and whose thoughts are still highly rele-
vant; I found Eddington only negatively mentioned as having no connection with statistics
(loc.cit., p. 4; but cf. Section 7 above); and in the historical section I missed even Gauss
(except in the term “Gaussian distribution”) and his famous story about the rediscovery
of Ceres, undoubtedly one of the greatest triumphs of astrostatistics ever. But these re-
marks should not distract from the value of the book in bringing together, in a concise and
readable way, a lot of technical information about statistics, as well as about astronomy. I
only try to point out that above the (necessary) mathematical–technical level of statistics
there exists still another level, where for example the usefulness and limitations of statisti-
cal methods in astronomy are assessed, and which some of the greatest astronomers were
clearly aware of.

11 Summary and outlook

While almost all of statistical research is done on the purely mathematical–technical level
(and this may often be a necessity for young people trying to get recognition), and while
even this level sometimes has its intrinsic problems (cf. Section 5), I tried to show that
there are two other steps which are necessary for applying statistics properly (cf. Section
4), and which are on a different, in some sense higher level than mathematical statistics.
I tend to distinguish three levels of mathematics and its use: in the middle the core or
skeleton of pure mathematics, the center within which most mathematicians are work-
ing; above it the intuition (“blood, flesh, skin...”) about mathematics, which becomes
important for the most creative geniuses in mathematics, and which is also central for
defining new concepts and paradigms and for applying mathematical results to the non-
mathematical world, as in good applied statistics; and below it the use of mathematics
(in our case, statistical formulae) with neither formal nor intuitive understanding (e.g.,
“cookbook statistics” in the bad sense). We might also say the middle level is charac-
terized by analytic thinking, and the upper level by synthetic thinking. In talking to my
colleagues in pure mathematics, I got the impression that some of them are not even aware
of the existence of the upper level, or try to repress it: this may be also a reason for the
difficulties good applied statisticians have in getting recognition by mathematicians.

But I think the “logic” of good applied statistics is different from, or at least much
more sophisticated than the logic of pure mathematics. It takes the approximate character
of all models, realistic situations, and various background knowledge and experience into
account, things which are hard or impossible to formalize logically. (Some aspects may
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be formalized and then lead to new research in mathematics; but in a data–analytic
situation we also have to take care of the unformalized rest.) Two simple examples for
the different ways of thinking in pure mathematics and in applied statistics are due to
J. W. Tukey: Consider the distributions F (x) = (1 − 10−10) Standard–Normal +10−10

Standard–Cauchy, and G(x) = Standard–Cauchy restricted to [−10100, 10100]. G(x) has
all moments, the Central Limit Theorem applies for i.i.d. observations from it, etc.; but
for almost all practical purposes it behaves like a Cauchy distribution. On the other hand,
the mean of i.i.d. observations from F (x) behaves “normally” except for exorbitantly large
samples, although the expectation does not even exist.

The requirements of real data analyses, with the additional restrictions of time, money,
etc., are different from those of mathematical statistics, although the door to the latter
should always remain open. I may cite a paragraph (Hampel 1987b, p. 95) describing my
own “philosophy” in consulting:

“The data were analyzed as they came in. The idea was to do what was required by
the data (and their scientific background), no less and no more. Doing no less implies that
there was hardly any interesting data set in consulting which the writer could treat by mere
routine methods... Doing no more implies, for example, that many approximations could
be improved or generalized, but this was not deemed necessary for the particular data at
hand... though some readers may find some germs of general ‘theories’ or ‘methods’ in
some of [the analyses].”

To give an example for the bridge to mathematics: I was told that much later there
were 2 Ph.D. theses on the nonparametric density estimates for the distribution of the
resting periods of migratory birds (loc.cit., p. 111f), on their rates of convergence etc.
using mathematical tools which did not even exist when I analyzed the data; but these
data, precious as they were, contained hardly more information than for a crude and biased
estimate of the mean and possibly the variance.

The above discussions (especially Sections 3, 7, 8) show that statistics should perhaps
study more open–mindedly what real data look like (rather than being caught too early
in preconceived model assumptions). With many and large data sets, including graphical
displays, easily available now on the computer, and with the tools of simulation and
Monte Carlo studies having become convenient (“Student” 1908 did his simulations still
by hand!), statistics might become more of an experimental science (like physics; with
actual data as its subject of study), and only one part of it (mathematical statistics)
would (and should) try to make it mathematically rigorous (the “skeleton”). We still can
(and have to) learn quite a bit about the general properties of real data. A few open
problems have been mentioned, and I am sure there is more in the oral traditions of
experience of subfields like quality control, biostatistics, and survey sampling, including
governmental statistics; we might even learn from fields like information theory, computer
science, different kinds of logic, linguistics, psychology, and philosophy, as “data” are
subject to many kinds of distortions, misconceptions, correlations, systematic blunders,
and faulty or shaky definitions, in addition to classical random variability.

Statistics does often need high–level mathematics. But it needs also intuition about
mathematics, intuition and experience about statistics, intuition and high standards about
computer experiments, intuition and experience about real data, intuition and background
knowledge about the data’s subject matter area.

Let us face reality and acknowledge what is still unknown.
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