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Abstract

Motivation: Microarray experiments are expected to contribute significantly to progress in cancer
treatment by enabling a precise and early diagnosis. They create a need for class prediction tools
that can deal with a large number of highly correlated input variables, perform feature selection,
and provide class probability estimates that serve as a quantification of the predictive uncertainty.
A very promising solution is to combine the two ensemble schemes bagging and boosting to a novel
algorithm called BagBoosting.
Results: When bagging is used as a module in boosting, the resulting classifier consistently im-
proves the predictive performance and the probability estimates of both bagging and boosting on
real and simulated gene expression data. This quasi-guaranteed improvement can be obtained by
simply making a bigger computing effort. The empirical advantage is also clearly present when
comparing BagBoosting to several established class prediction tools for microarray data.
Availability: Software for the modified boosting algorithms, for all other classifiers described in
this paper, as well as for benchmark studies and simulation of microarray data are available for
free as an R package at http://stat.ethz.ch/~dettling/bagboost.html

1 Introduction

A precise diagnosis of cancerous malignancies is difficult but often crucial for successful treatment.
Given the large-scale, high-throughput gene expression technology and accurate statistical methods,
bio-molecular information could become as, or even more important for cancer diagnosis than tra-
ditional clinical factors. The challenge is that microarray experiments generate large datasets with
expression values for thousands of genes, but usually not more than a few dozens of arrays. The situ-
ation with so many more predictor variables than experiments rises new statistical challenges and has
lead to a wealth of research. The task of diagnosing cancer on the basis of microarray data has been
termed class prediction in the literature, and encompasses methods ranging from modified versions of
traditional discriminant analysis, over penalized regression approaches, classical nonparametric meth-
ods such as the nearest neighbor rule to modern tools of machine learning. See for example Dudoit
and Fridlyand (2003) for an overview and references.

†Author contact details: Tel.: +41-1-632-5319; fax: +41-1-632-1228; e-mail: dettling@stat.math.ethz.ch
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Boosting is a flexible class prediction tool from machine learning with remarkable success in a wide
variety of applications, especially in those with high-dimensional predictors. It aims at producing an
accurate committee classifier from a sequential ensemble of base learners, which are fitted to adaptively
reweighted versions of the data. It is attractive to use boosting for class prediction with microarray
data due to its natural ability to perform multivariate feature selection, and because it provides class
probability estimates which serve as a natural quantification of the predictive uncertainty. This has
first been tried by Ben-Dor et al. (2000) and Dudoit et al. (2002) with moderate success: empirically,
boosting could at best keep up with much simpler methods such as the nearest neighbor rule. Later
we suggested a boosting algorithm that was tailored for microarray data, showing a more satisfactory
predictive performance, see Dettling and Bühlmann (henceforth DB, 2003).

training sample −→ weighted sample −→ . . . −→ weighted sample
↓ ↓ ↓

Bagging Bagging Bagging
↓ ↓ ↓

f1(x) f2(x) fM (x)︸ ︷︷ ︸
F̂BagBoost(x) =

∑M
m=1 αmfm(x)

Figure 1: The fundamental idea of BagBoosting

Here, we present a novel type of boosting algorithm and show its promising potential to improve class
prediction with microarray data. Our algorithm is called BagBoosting, because it uses bagging as a
module in our tailored boosting algorithm for microarray data. The idea is illustrated in Figure 1: in
each boosting iteration, we do not just rely on a single base learner, but instead aggregate the output
from several base predictors generated from bootstrap samples, each drawn with replacement from the
reweighted training data. The rationale for combining the two ensemble schemes bagging and boosting
is as follows. While the boosting committee has clearly lower bias but slightly increased variance than
the base learner, bagging of (unstable) base learners leads to an ensemble with lower variance but
approximately non-altered bias. Hence BagBoosting might combine the advantages of both methods
and results in a prediction tool achieving both lower bias and variance, i.e. lower mean squared error.
Even though we cannot present a strict mathematical justification that applies for the microarray
setting, simulation studies clearly reflect these heuristically derived advantages. As a consequence,
we also expect BagBoosting to yield superior class prediction results on real microarray data. An
elaborate empirical study confirms the improvement compared to both bagging and boosting. Also
with respect to established classifiers including discriminant analysis, nearest neighbor methods and
modern tools such as support vector machines and random forests, BagBoosting is very competitive.

2 Methods

2.1 Class Prediction with Gene Expression Data

The main goal in class prediction with gene expression data is a precise and early diagnosis of cancerous
malignancies that allows to tailor the patients’ treatment for maximal efficacy and minimal toxicity.
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Given microarray experiments and information about the disease outcome from n former patients, the
task of class prediction amounts to learning the relation between the transcript levels and the outcome.
Then, presented with the gene expression profiles of new, independent patients, we can establish a
diagnosis of their disease development and outcome. In mathematical notion, we assume that we are
given a learning sample L of n training data pairs

L = {(x1, y1), . . . , (xn, yn)},

which are iid realizations of a random vector (x, y). The feature vector x ∈ Rp is the gene expression
profile, which can be either from cDNA microarrays or from Affymetrix oligonucleotide chips, but we
assume that it is accurately preprocessed and normalized, such that it can be taken at face-value. In
the simplest form, the response variable y ∈ {0, 1} codes for a dichotomous response1, as for example
tumor subtype or risk category. For class prediction, we choose the approach of estimating conditional
class probabilities

p̂(x) = P̂L[y = 1|x]

from the learning sample L, based on the gene expression profile x. They are a natural quantification
for the uncertainty of class predictions and can in turn be used to predict class labels. In the case of
equal misclassification costs, a new patient with gene expression profile xν is assigned to one of the
response classes via

ŷ(xν) =
{

0, if p̂(xν) < 1/2
1, if p̂(xν) ≥ 1/2.

(1)

Estimating conditional probabilities and subsequent class prediction is a thoroughly discussed problem
in statistics, but microarray data with thousands of predictor variables p and just dozens of samples
n are a new challenge which requires adaption of known and development of novel methodology. A
promising tool performing multivariate variable selection, providing probability estimates and having
good predictive potential in such high-dimensional problems are modified boosting algorithms.

2.2 BagBoosting

Boosting, first proposed by Freund and Schapire (1996), is a powerful ensemble method that consis-
tently estimates conditional class probabilities p̂(x) from a sequence of base classifiers which are fitted
to iteratively reweighted versions of the training data. The initial notion of boosting was that in each
iteration, the cases that were misclassified in the previous round get their weights increased, whereas
the weights are decreased for cases that were correctly classified. Rather than as a sequential data
reweighting scheme, boosting can more fruitfully be seen as a forward stagewise strategy for function
estimation. It works by iterative optimization of an empirical risk function

R(L, F̂M , L) =
1
n

n∑
i=1

L(yi, F̂M (xi))

from the learning set L via constrained functional gradient descent, where F̂M (·) denotes the current
function estimate and L(·, ·) a statistically motivated loss function. If we employ the binomial log-
likelihood or deviance

L(y, F̂M ) = log(1 + exp(−2yF̂M )),
1Extensions to a polytomous response are discussed later in section 2.3
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a continuous surrogate for the 0/1-misclassification loss and a very established criterion for binary
classification, it is easy to show that the resulting algorithm, called LogitBoost (Friedman et al.,
2000), yields an approximation to half of the log-odds ratio. That is,

F̂M (x) =
M∑

m=1

αmfm(x) ≈ 1
2

log
(

p(x)
1− p(x)

)
.

Hence, LogitBoost is a linear expansion in a set of base learners fm on the logit scale, obtained by
stagewise optimization of the binomial log-likelihood. By a simple transformation, we obtain estimated
conditional class probabilities

p̂(x) =
1

1 + exp(−2F̂M (x))

which can be used for class prediction as in (1). Obviously, the choice of the base learner fm is
crucial for the final boosting estimate F̂M . Originally, mainly decision trees have been used as a base
procedure. In the context of microarray data, we observed that stumps, these are the simplest decision
trees with only one split and two terminal nodes, yield the best empirical performance (DB, 2003).

Now, we present a novel type of algorithm which uses Breimans bagging (1996) as a module in our
tailored boosting procedure for microarray data. This amounts to a modification of boostings base
learner: instead of relying on a single decision tree/stump, we aggregate multiple versions of them,
obtained from bootstrap samples which are drawn with replacement from the reweighted training
data of the mth boosting iteration, see Figure 1. This intuitive idea has been thought of by different
researchers, it was briefly sketched in Bühlmann and Yu (2000), but there are neither any publica-
tions containing a formal description of the algorithm, nor are there any systematical analyses of its
performance via empirical studies on real or simulated data.

Algorithmic details
Our BagBoosting algorithm for class prediction with microarray data is the LogitBoost algorithm
using bagged stumps as base learner. It is defined as follows.

Step 1: Initialization
Set the initial boosting estimate to F̂0(xi) ≡ 0 and the initial probabilities to p(xi) ≡ 1/2.

Step 2: Boosting iterations
For m ∈ {1, 2, . . . ,M = 100} repeat:

A. Compute the weights wi and the working response zi for i = 1, . . . , n

wi ← p(xi) · (1− p(xi)) ,

zi ←
yi − p(xi)

wi
.

B. Bagging to obtain the base learner
For b ∈ {1, 2, . . . , B = 50} repeat:

(i) Construct a bootstrap sample B = {(x∗1, w∗
1, z

∗
1), . . . , (x

∗
n, w∗

n, z∗n)} by randomly drawing n
triples with replacement from the original data triples {(x1, w1, z1), . . . , (xn, wn, zn)}
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(ii) Fit a regression stump g(b) by weighted least squares on the bootstrap sample B

g(b)(·) = arg min
g(·)

n∑
i=1

w∗
i (z

∗
i − g(x∗i ))

2

Average these B stumps to obtain boostings base learner

fm(xi)←
1
B

B∑
b=1

g(b)(xi), for all i = 1, . . . , n

C. Updating the boosting estimate and the probabilities

F̂m(xi) ← F̂m−1(xi) +
1
2
fm(xi),

p̂(xi) ←
1

1 + exp(−2F̂M (xi))
.

The definition of weights wi and working response zi in the Logit(Bag)Boost algorithm is such that
the (bagged) base learner is forced to focus on observations close to the decision boundary, i.e. data
points where the boosting classifier is in doubt about class membership. The final number of boosting
iterations M regulates the complexity of the prediction model, early stopping is a form of shrinkage.
In the context of microarray data, we recommend a default value of M = 100, which is a reasonable
compromise between computing time, predictive accuracy and prevention of overfitting. This choice
was shown to be empirically superior to approaches where M was estimated on the training data via
cross validation (DB, 2003). In contrast, the number of bagging iterations B is not a tuning parameter:
in theory, the bagged estimator corresponds to the bootstrap expectation and would require infinitely
many iterations. In practice, we employ Monte Carlo methods for an approximation; our choice of
B = 50 has been recognized as sufficiently large in Breiman (1996).

Some Heuristics about BagBoosting
If the underlying base algorithm is a decision stump, this is a univariate indicator function with one
split point in a single variable xj and constant values in the two terminal nodes, BagBoosting yields a
model which is additive in the predictor variables. This, since in every boosting iteration an average
of B univariate functions is linearly added to the current fit. We can always rearrange the summation
and represent the BagBoosting estimate as an additive combination

F̂M (x) =
p∑

j=1

θjh(xj), (2)

where h(·) are aggregated indicator functions typically showing a much smoother behavior than
stumps. The coefficient θj is determined by when, how often and with which accuracy the jth variable
was used during the bagging and boosting iterations; it reflects gene j’s importance in the final Bag-
Boosting committee. One of BagBoostings strengths is that it performs multivariate variable selection
and adds complexity in a stagewise fashion: some of the genes are never selected at all and have
θj ≡ 0. The boosting iterations, i.e. the incorporation of new terms in (2) is always conditional on the
current fit, such that we select genes that provide supplementary information to the previous ones,
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rather than picking genes that all re-explain the same phenomenon as with univariate gene selection.
The relatively simple, additive model from (2) is focusing on the main effects, but free of interaction
terms. This does not mean that we deny them in the “true” model, but from an empirical viewpoint
(data not shown), probably due to the usually small sample size n, it pays off to rely on this simpler
auxiliary model. As microarray studies get larger, more complicated models may become appropriate.
The big advantage of BagBoosting is that we can obtain them, without alterations on the generic
algorithm itself, by just using larger decision trees as the base algorithm.

It is well known that stumps are an unstable weak learner, producing highly biased and variable
estimates. Here, we give some heuristical arguments why BagBoosting, an additive expansion in the
set of stumps, improves these poor properties. Bühlmann and Yu (2003) show that squared error
loss boosting with smoothing splines as base learner leads to an ensemble that has strongly reduced
bias, but only slightly higher variance than the base learner. Although the mathematical results
cannot be directly transferred, the pronounced bias reduction and the weak increase of the variability
presumably hold as well when applying LogitBoost with stumps to microarray data. Thus, there is
room to improve boosting with a low variance base learner, which however still needs to have weak
learning capacity only, i.e. a considerable amount of bias. Bagging, a smoothing operation that
reduces the variance of unstable prediction tools by averaging out hard decisions as from indicator
functions, but without having much of an effect on their bias, is predestinated to be used as base
learner in boosting. The rationale is that BagBoosting profits from the synergy of baggings variance
and boostings bias reduction and achieves lower mean squared error, such that we can expect a better
predictive performance. These heuristics are supported by our empirical work on real and simulated
data, shown in the results section.

Comparison to other modifications of Boosting
Here, we emphasize that BagBoosting differs from other boosting bagging hybrids that have been
proposed in the literature. In his stochastic gradient boost, Friedman (2002) draws a single, random
subset of the data points for each boosting iteration and fits a single decision tree learner. The
subsampling even increases the variability of the base learner, but Friedman argues that it reduces
the correlation among the learners from different stages, which results in a variance reduction of the
final boosting committee. He demonstrates superior empirical results on a few simulated regression
and (to a much lesser extent) classification problems. Another procedure sharing similarities with
BagBoosting is Breimans “Iterated Bagging to Debias Regressions” (2001a). As the heading suggests,
it is a procedure primarily developed for the regression, but not the classification context. It is closely
related to squared error loss boosting and works by stagewise fitting of unbiasedly estimated residuals
from the out-of-bag samples in a bagged base learner. Besides our common goal of simultaneously
reducing bias and variance by combining stagewise modeling with bagged learners, our procedures are
fundamentally different, since we are boosting small bagged decision trees in a classification problem,
without making use of the out-of-bag samples.

2.3 Multiclass Problems

Since there are usually no genes that accurately discriminate more than two classes at once, we
recommend to run multiple binary comparisons in J-class microarray problems where y ∈ {0, 1, . . . , J−
1}. The simplest solution is the one-against-all approach, which works by defining the response in
the jth problem as y(j) = 1 if y = j, and y(j) = 0 else. Then, we are running BagBoosting J times on
the modified data L(j) = {(x1, y

(j)
1 ), . . . , (xn, y

(j)
n )}. The estimated conditional class probabilities are
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normalized and can in turn be used for maximum likelihood classification via

p̂(j)(x) =
P̂L(j) [y(j) = 1|x]∑J−1

k=0 P̂L(k) [y(k) = 1|x]

ŷ(x) = arg max
j∈{0,...,J−1}

p̂(j)(x)

.

In DB (2003) we have shown that this is empirically superior to boosting algorithms where multiclass
problems are handled more simultaneously. Depending on the structure of the response classes, more
complex schemes than one-against-all may be more accurate for splitting polytomous into multiple
binary problems.

2.4 Feature Preselection

BagBoosting incorporates multivariate feature selection and hence does not crucially depend on pre-
liminary gene filtering by univariate methods as many other class prediction tools. When running
our analyses for several different numbers (10, 25, 50, 75, 100, 200) of genes filtered by the Wilcoxon
test statistic, we observed that the error rates as well as the ranking among the classifiers did hardly
change. Moreover, the predictive potential of BagBoosting was only slightly worse without gene pres-
election, whereas many benchmark classifiers deteriorated severely. For a fair comparison and due to
space constraints, we just display the outcome with 200 genes in the results section. The complete
information is available from the webpage http://stat.ethz.ch/~dettling/bagboost.html.

2.5 Other Classifiers

We compared BagBoosting to several competitors: These were 1) CART, mid-sized classification trees
from the default implementation in the R function rpart(); 2) Bagging, run with 50 mid-sized classi-
fication trees and final prediction via majority voting; 3) Boosting, 100 iterations of LogitBoost with
stumps as in DB (2003); 4) random forests (Breiman, 2001b), following the default implementation
in the R function randomForest(); 5) support vector machines (SVM), with radial basis kernel using
the default cost parameter of c = 1 for penalizing observations with negative margins; 6) the 1-nearest
neighbor rule (NNR), relying on Euclidean distances; and 7) diagonal linear discriminant analysis
(DLDA). 1), 2) and 3) serve to show the improvements of BagBoosting over closely related, tree-based
methods, 4) and 5) are state-of-the-art machine learning tools which usually are close competitors
to boosting. 6) and 7) are benchmark methods that despite their simplicity, were identified as very
accurate for class prediction with gene expression data in Dudoit et al. (2002).

3 Results

3.1 Real Data

We report the class prediction performance of BagBoosting on six publicly available datasets. These
are:
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Dataset Publication n p J Response
Leukemia Golub (1999) 72 3,571 2 subtypes of leukemia
Colon Alon (1999) 62 2,000 2 tumor/normal tissue
Prostate Singh (2002) 102 6,033 2 tumor/normal tissue
Lymphoma Alizadeh (2000) 62 4,026 3 subtypes of lymphoma
SRBCT Khan (2002) 63 2,308 4 different tumor types
Brain Pomeroy (2002) 42 5,597 5 different tumor types

After preprocessing, all gene expression profiles were base 10 log-transformed and, in order to prevent
single arrays from dominating the analysis, standardized to zero mean and unit variance. In the
absence of genuine test sets for four of the six datasets, we performed our benchmark study by
repeated random splitting into learning and test sets exactly as in Dudoit et al. (2002). The data
were partitioned into a balanced learning set L comprising two thirds of the arrays, used for feature
preselection and fitting the classifiers. Then, the class labels of the remaining third of the experiments
were predicted and the misclassification error was computed as the fraction of predicted class labels
that differed from the true one. To reduce the variability, the splitting into learning and test sets was
repeated 50 times and the error estimates were averaged. It is important to note that these results are
honest in the sense that all gene filtering and classifier fitting operations were re-done on each of the
50 learning sets to allow for reliable conclusions and to avoid over-optimistic results with downward
bias.

Leuke Colon Prost Lymph SRBCT Brain Rank
BagBoost 4.08% 16.10% 7.53% 1.62% 1.24% 23.86% 2.67
RanFor 2.50% 15.43% 7.88% 1.43% 2.29% 34.71% 3.17
SVM 3.50% 16.67% 6.82% 0.95% 1.81% 28.14% 2.67
kNN 3.83% 16.38% 10.59% 1.52% 1.43% 29.71% 4.00
DLDA 2.92% 12.86% 14.18% 2.19% 2.19% 28.57% 4.00
Boosting 5.67% 19.14% 8.71% 6.29% 6.19% 27.57% 5.17
Bagging 7.17% 16.86% 8.94% 20.57% 19.33% 49.00% 6.67
CART 13.42% 25.52% 12.59% 20.48% 24.38% 51.29% 7.67

Table 1: Misclassification rates and average ranking for 8 classifiers on 6 microarray datasets, based
on 50 random partitions into learning sets (2

3 of the data) and test sets (1
3 of the data).

In Table 1, we report the misclassification rates, as well as the average ranking of the classifiers over
the six datasets. Figure 2 contains a visual illustration of these results. The intervals in this plot
show the variability over the 50 random splits and represent ±1.96 standard errors from the point
estimate, but their interpretation needs some caution: due to data overlap in the learning sets L,
the error estimates of the 50 splits are not independent. The error bars may therefore be smaller
than the true 95%-confidence region, and non-overlapping intervals cannot directly be interpreted as
a significant advantage. On the other hand, if they do overlap, the differences are not significant.
We conjecture that the three top classifiers are BagBoosting, support vector machines and random
forests. There is no clear advantage for one of them, except for BagBoosting on the brain tumor data.
The simple benchmarks NNR and DLDA do surprisingly well and can almost keep up except on the
prostate data, notably the largest dataset in the analysis. This may point out that the success of such
simple methods is limited to gene expression datasets with small sample size. Plain boosting does not
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Figure 2: Misclassification rates for 8 classifiers on 6 microarray datasets, based on 50 random splits
into learning and test sets. The bars represent pseudo-confidence intervals, showing the variability of
the point estimates.

perform badly, but is worse than BagBoosting on all datasets. This consistent improvement already
legitimates the additional computing effort by using bagged stumps as a learner in boosting. Finally,
it is obvious that bagging is not suitable for class prediction with gene expression data. It performs
clearly worse than the top three methods, cannot keep up with boosting and sometimes even fails to
improve the poor predictive potential of CART.

3.2 Simulation Studies

Our motivation to run simulation studies is three-fold. First, due to the scarcity of samples in real
datasets, it is hard to detect relevant differences and to assess significant improvements for the clas-
sifiers. We will thus run a benchmark study on independent realizations of large gene expression
datasets. Second, due to the lack of knowledge about the data generating process and the underlying
probability distribution on real datasets, we cannot draw any inference about BagBoostings heuris-
tically claimed improvement of bias and variance, i.e. mean squared error. Third, since we know
the true response model on the simulated data, we can check how accurately BagBoosting recovers it
from data, which is important to get an idea how well the BagBoosting model can be trusted in real
datasets to draw biological conclusions. All these tasks critically hinge on a realistic simulation model
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for gene expression data. It is as follows.

Step 1: Estimating correlation and means from real data
Use a real gene expression dataset of choice for estimating the (p× p)-covariance matrix Σ, as well as
the p-dimensional mean vectors µ(k) = (µ(k)

1 , . . . , µ
(k)
p ) from the samples of class k ∈ {0, 1}.

Step 2: Generating new gene expression profiles
For an arbitrary sample size n of choice repeat independently:

(i) Generate a random vector by the p-dimensional multivariate standard normal distribution,

z ∼ N p(0, 1p×p)

(ii) Transform z into a gene expression profile via

x = Bz + µ̂(k),

where B is a square root of the covariance matrix Σ, determined by singular value decomposition.

Step 3: Response model
Determine conditional probabilities and class labels by one of 3 response models of different complexity

(a) Additive model with 10 genes
Use a set of 10 genes, assume w.l.o.g. that these are the first 10 genes. Then,

F (x) =
10∑

j=1

xj .

(b) Weighted additive combination of 25 genes
Use a set of 25 genes, assume w.l.o.g. that these are the first 25 genes. Fix a set of coefficients
βj , for example randomly drawn from a uniform distribution on [1, 3.5]. Then,

F (x) =
25∑

j=1

βjxj .

(c)) Complex interaction model with 25 genes
Use a set of 25 genes, assume w.l.o.g that these are the first 25 genes. Fix three sets of coefficients
βj , γj and δj , for example, each is randomly drawn from a uniform distribution on [0, 2], [0, 2

10 ]
and [0, 1

10 ], respectively. Then,

F (x) =
25∑

j=1

βjxj · (1 +
25∑

j=1

γjxj) · (1 +
25∑

j=1

δjxj).

We regard F (x) as the log-odds ratio, which can be converted into a conditional class probability p(x).
Finally, the class label y(x) is randomly generated from a Bernoulli experiment, i.e.

p(x) =
1

1 + exp(−2F (x))
,

y(x) ∼ Bernoulli (p(x)) .
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Note that the choice of genes and coefficients happens by a random mechanism, but is fixed for all
samples in a simulation run. Using this recipe, we can generate an arbitrary number of iid gene
expression profiles that follow the covariance and differential expression properties of a microarray
dataset of choice. For our empirical work, we considered the structure of leukemia, colon and prostate
data. Due to space constraints and since the conclusions drawn from different structures were very
similar, we here display the results for leukemia data only and refer to our supplementary webpage
http://stat.ethz.ch/~dettling/bagboost.html for the complete information. The response mod-
els yield decision boundaries of various complexity and result in a Bayes error (theoretical misclassi-
fication risk) between 5-10%. As this is even more than the estimated generalization error on many
real gene expression datasets, we conjecture that our response models are sufficiently complicated and
realistic.

Classification Results
For a discussion of the predictive potential, and for testing the null hypothesis of equal performance, we
run a benchmark study on simulated gene expression data with several classifiers. In each simulation
experiment, we generated a learning set of 200 arrays and a large test set with 1000 observations,
both with balanced class distributions. Exactly as on the real data, the preselection of 200 genes and
the fitting of the classifiers was performed on the learning data, before the misclassification risk was
estimated by the fraction of predicted test set class labels differing from the true one. This simulation
experiment was independently repeated 100 times. The averaged error rates are illustrated in Figure
3. Note that since we computed the error rates from 100 iid simulation experiments, the intervals of
±1.96 standard errors from the point estimate now represent asymptotic 95% confidence regions for
the classifiers generalization errors. The iid property of the error estimates also allows to formally test

Response model a)

E
rr

or
 ra

te

B
ag

B
oo

st

R
an

Fo
re

st

S
V

M

B
oo

st
in

g

D
LD

A

N
N

R

B
ag

gi
ng

C
A

R
T

0.
18

0.
20

0.
22

0.
24

Response model b)

E
rr

or
 ra

te

B
ag

B
oo

st

R
an

Fo
re

st

S
V

M

B
oo

st
in

g

D
LD

A

N
N

R

B
ag

gi
ng

C
A

R
T

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

Response model c)

E
rr

or
 ra

te

B
ag

B
oo

st

R
an

Fo
re

st

S
V

M

B
oo

st
in

g

D
LD

A

N
N

R

B
ag

gi
ng

C
A

R
T

0.
14

0.
16

0.
18

0.
20

0.
22

Figure 3: Misclassification rates for outsample classification on simulated gene expression data with
various classifiers and three different response models. The bars represent asymptotic 95% confidence
intervals, estimated from 100 independent simulation runs.

the null hypothesis that classifiers perform equally. We focus on pairwise comparisons of BagBoosting
against its competitors. Table 2 reports the error rates for each classifier, averaged over the 100
simulation runs, as well as the number of runs where it was less accurate than BagBoosting. Under
the null hypothesis of equal performance, we would expect this number to be 50. In a third column,
we report the p-value of the one-sided sign test for the null against the alternative that BagBoosting
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classifies better. In our simulation study with correlation and differential expression structure from

Response a) Response b) Response c)
Error Worse p-val Error Worse p-val Error Worse p-val

BagBoost 17.02% - - 17.57% - - 13.19% - -
RanFor 18.44% 87 0.000 18.50% 74 0.000 13.39% 60 0.028
SVM 18.80% 82 0.000 19.32% 84 0.000 16.22% 73 0.000
Boosting 18.32% 89 0.000 19.09% 96 0.000 14.42% 97 0.000
DLDA 20.83% 99 0.000 21.15% 98 0.000 17.18% 91 0.000
kNN 24.04% 100 0.000 25.67% 100 0.000 18.90% 100 0.000
Bagging 24.72% 100 0.000 27.25% 100 0.000 22.85% 100 0.000
CART 23.61% 100 0.000 26.08% 100 0.000 21.42% 100 0.000

Table 2: Misclassification rates for outsample classification on 100 iid simulation experiments with
various classifiers and three different response models, as well as the number of simulations where
each of the classifiers was worse than BagBoosting, and the p-value for the one-sided sign test that
BagBoosting classifies more precisely.

the leukemia dataset, the relation among the classifiers does not vary much over the three response
models. BagBoosting is significantly better than all its competitors: the hardest competitor is random
forests, but even when using response model c) with interactions of third order, BagBoosting has an
edge. This is quite surprising, since random forests are built from mid-sized trees that encompass such
interaction terms, whereas BagBoosting with stumps only fits a main effect model. Support vector
machines yield somewhat worse and more variable predictions, but might be improved by tuning the
cost parameter (which we fixed to c = 1). Although boosting shows a much better performance
on simulated compared to real data, it remains clearly behind BagBoosting. The lag is strongly
significant and increases with the complexity of the response model. The difference between these
top four methods and the benchmarks NNR/DLDA is much bigger than on real data, yielding further
evidence that the benchmarks’ success is limited to small datasets. Again, as on the real data, bagging
and CART are not very successful.

Improvement of Bias and Variance
The knowledge about the probability distribution P [y = 1|x] in simulation experiments allows to
check whether BagBoosting has the heuristically claimed property to lower bias and variance in
comparison with single, bagged and boosted stumps. There is no bias-variance decomposition of
the 0/1-misclassification error, we are thus running such an analysis on the basis of the predicted
conditional class probabilities p̂(x). Since we are not focusing on a particular input value x, but want
to learn about the precision of an estimated probability structure over the whole input space X , the
measure of interest is the integrated mean squared error

IMSE(p̂) =
∫
X

Var(p̂(x)) + E [p̂(x)− p(x)]2dF(x),

where F is the probability distribution on the input space. The IMSE is decomposed into variance
and bias and can be estimated via approximating the outer integral by randomly drawing a sufficiently
large number of input values xi from F . Variance and expectation are approximated by averaging
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over a sufficiently large number of simulations: an estimation of integrated variance and integrated
squared bias of a probability function are given by

V ar(p̂) =
1
T

T∑
i=1

[
1
S

S∑
k=1

(p̂k(xi)− p̄(xi))2
]

Bias(p̂)2 =
1
T

T∑
i=1

[
1
S

S∑
k=1

p̂k(xi)− pk(xi)

]2

,

where p̂k(xi) and pk(xi) denote the estimated and true probabilities in the kth simulation run, and
where p̄(xi) =

∑S
k=1 p̂k(xi). For checking the bias-variance properties of BagBoosting versus single

stumps, bagged stumps and boosted stumps, we performed S = 100 simulation runs and generated
learning sets of 200 observations each. Gene preselection and fitting the four predictors was redone
on each learning set, before out-of-sample probability estimates p̂(xi) for T = 1, 000 fixed test points
were computed. The results are summarized in Table 3.

Response a) Response b) Response c)
IMSE V ar Bias2 IMSE V ar Bias2 IMSE V ari Bias2

Stumps 0.102 0.041 0.061 0.116 0.040 0.075 0.128 0.037 0.091
Bagging 0.069 0.010 0.059 0.083 0.010 0.073 0.096 0.008 0.088
Boosting 0.076 0.048 0.028 0.086 0.056 0.030 0.090 0.047 0.043
BagBoost 0.045 0.020 0.026 0.050 0.023 0.027 0.056 0.019 0.037

Table 3: Estimates of integrated mean squared error, variance and squared bias for conditional class
probabilities, obtained from four different prediction methods on simulated gene expression data with
three different response models.

All our heuristical claims are confirmed by the simulation results which are consistent over the
three response models. In terms of the IMSE, BagBoosting is best, ranking before the about equally
good bagging and boosting, whereas single stumps are clearly worse. This means that BagBoosting
not only yields the best 0/1-classification, but also the most precise estimates of the conditional
class probabilities. As expected from theory, bagged stumps have considerably lower variance but
similar bias as single stumps. On the other hand, boosted stumps have slightly higher variance than
single stumps, but they compensate by a much bigger gain in bias. Finally, as heuristically derived,
BagBoosting has both lower bias and variance than stumps. The use of a bagged stump as base
learner in boosting clearly pays off: while the variance is about 60% less than for plain boosting, the
bias does not increase and is even about 10% lower. Hence we conjecture that BagBoosting really
exploits the synergy of bagging and boosting; the mechanisms for improving bias and variance work in
the microarray setting. These results confirm our previous evidence that BagBoosting improves upon
bagging or boosting, and that it is worth the additional computing effort.

Model recovery
The purpose of this section is to check how well BagBoosting recovers the true response model in
such a difficult setting as microarray data with thousands of highly correlated predictor variables.
The inference is based on a single (but representative) learning set L from our simulation model with
response type a) and correlation/differential expression structure of the leukemia data. As a slight
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modification, we standardized all genes to unit variance to facilitate the inference. Then, we select the
200 most discriminative genes according to the Wilcoxon statistic, run BagBoosting and rewrite the
fit in its componentwise additive representation from equation (2). For each variable xj , the smoothed
step functions, obtained by combining numerous stumps, are centered to zero mean and scaled to unit
variance across the 200 fitted values; this yields the univariate functions h(xj). The scaling factor is
then defined as the coefficient θ̂j . It reflects the importance of the jth variable in the final BagBoosting
estimate.
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Figure 4: BagBoosting model fit and true predictors: the black dots represent the linear univariate
functions for 3 genes in the simulation model. Superimposed are the smoothed univariate step functions
and their fitted values (grey circles), obtained by BagBoosting with stumps.

Figure 4 shows the true function values xj (black dots on the diagonal), along with the smoothed
step functions and their fitted values (grey circles) from the final BagBoosting estimate. Displayed
are the three most important predictor variables, i.e. the genes with the biggest coefficients θ̂j . Note
that the estimated functions h(xj) are accurately centered, but their shape is smooth and linear in
just a restricted interval around zero. This is not too surprising, since Logit(Bag)Boost mainly focuses
on accurate estimation in a region around the decision boundary, and data points that are classified
with higher confidence are regarded as less interesting. This argument is supported by the fact that a
log-odds-ratio of F (x) = 1, where the step functions level out, corresponds to an estimated probability
of p(x) = 0.88.

Table 4 reports the estimated model coefficients θ̂j for the 10 true genes from the simulation model,
as well as for the 10 most important features in the BagBoosting fit. The importance ranking R(θ̂j)
is determined by the magnitude of θ̂j . We observe a small overlap of only 2 genes between the true
and the most important variables. Moreover, many of the true genes have low importance θ̂j , far
from the theoretical value θj = 1. On the other hand, the 10 most important genes have limited
influence, too. BagBoosting spreads the responsibility on the shoulders of a larger gene set: 6 of the
200 available genes were never selected at all, 141 have a neglectable influence with θ̂j < 0.05, whereas
the remaining 53 genes form the core for class prediction. The discrepancy between the true and the
fitted model may seem disappointing, but is explained as follows. While only 10 genes determine the
hidden target function F (x) and the exact course of the decision boundary, many more are closely
associated with the class labels y on the learning set that BagBoosting is presented with, due to the
high correlation and the (often strong) differential expression for the genes. This is confirmed with
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Important Genes True Genes
Gene R(θ̂j) θ̂j Corr Gene R(θ̂j) θ̂j Corr

1 1 0.859 1.000 1 1 0.859 1.000
2 2 0.450 1.000 2 2 0.450 1.000
44 3 0.226 0.494 3 19 0.129 0.810
582 4 0.220 0.646 4 61 0.047 0.752
1026 5 0.217 0.623 5 66 0.041 0.864
1072 6 0.212 0.482 6 74 0.033 0.846
520 7 0.204 0.710 7 88 0.026 0.832
930 8 0.197 0.582 8 137 0.012 0.779
1894 9 0.188 0.661 9 149 0.009 0.655
261 10 0.183 0.859 10 155 0.008 0.694

Table 4: Comparison of the 10 true and the 10 most important BagBoosting genes: given are their
estimated model coefficients θ̂j , the ranking R(θ̂j) of the coefficients according to their magnitude,
and the maximal correlation of each gene to one of the 10 genes from the other group.

our empirical analysis in Table 4, where we show the maximal correlation of each gene from the true
and the important feature set to a member of the other group. These correlations are above 0.5
throughout and indicate that the true genes are substituted by very similarly regulated genes. The
discrepancy between the true and the fitted model is a flaw that not only BagBoosting suffers from.
When analyzing the fitted models of the competing classifiers (where possible, results not shown), we
observe a similar disagreement, which is inherent to the highly collinear gene expression data. This
emphasizes that the prediction models, despite their merits in cancer diagnosis, must be treated with
enormous care for drawing biological conclusions.

4 Conclusions

The goal in class prediction with microarray data is a precise classification of cancerous malignancies
at an early stage, allowing for directed and more successful therapies. Important for this task are
classification algorithms that can deal with the high dimensionality of gene expression data, and that
exploit as much of the available information as possible. We propose a hybrid approach of ensemble
methods, where bagged stumps are employed as the base learner in boosting. On both real and sim-
ulated gene expression data, we show that BagBoosting consistently lowers the misclassification error
of plain boosting and bagging, and that it is very competitive in comparison to modern prediction
tools such as random forests and support vector machines. On simulated data, we furthermore pro-
vide sound empirical evidence that BagBoosting results in more precise conditional class probability
estimates by reducing both the bias and variance of the base algorithm.

It has been recognized by several researchers that the introduction of randomness into ensemble
schemes can improve their predictive potential. Due to the Monte Carlo approximation of the boot-
strap expectation, BagBoosting is a non-deterministic rule, too. However, we do not think that this
is the principal explanation for its success, which is rather caused by a variance reduction achieved by
averaging over a set of stumps, a very crude and unstable learner for microarray data. In simulation
studies, this variance reduction is shown to propagate within the boosting algorithm, which however
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still lowers the bias as desired. BagBoosting thus really combines the advantages of the two ensemble
methods it is built from.

Critical voices are often concerned that the time-consuming effort of fitting very complex pre-
diction tools such as (Bag)Boosting, random forests, etc. is not legitimated by the small empirical
improvement over much simpler methods on microarray data. Although at present, the advantage
of BagBoosting versus the nearest neighbor rule or diagonal linear discriminant analysis on gene ex-
pression data with limited number of samples is not very big in terms of the 0/1-misclassification
error. But the difference grows to significant size on larger microarray problems and becomes very
pronounced on simulated datasets with more than 1,000 expression profiles. While already a small
improvement today can save an additional patients life, sophisticated class prediction tools such as
BagBoosting are expected to display their full benefit only in future studies with larger sample size.
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Bühlmann, P. and Yu, B. (2000). Invited Discussion on Additive logistic regression: a statistical view
of boosting. Ann. Stat. 28, 377–386.
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