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Abstract∗ 
This paper proposes a new model for autoregressive conditional heteroscedasticity and 
kurtosis. Via a time-varying degrees of freedom parameter, the conditional variance and 
conditional kurtosis are permitted to evolve separately. The model uses only the standard 
Student’s t density and consequently can be estimated simply using maximum likelihood. The 
method is applied to a set of four daily financial asset return series comprising US and UK 
stocks and bonds, and significant evidence in favour of the presence of autoregressive 
conditional kurtosis is observed. Various extensions to the basic model are examined, and 
show that conditional kurtosis appears to be positively but not significantly related to returns, 
and that the response of kurtosis to good and bad news is not significantly asymmetric. A 
multivariate model for conditional heteroscedasticity and conditional kurtosis, which can 
provide useful information on the co-movements between the higher moments of series, is 
also proposed. 
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1. Introduction 
It is an almost universally accepted stylised fact that asset returns are not normally 

distributed, following early research by Mandelbrot (1963). It is further typical to 

observe that the non-normality of return distributions arises predominantly as a result 

of excess kurtosis rather than asymmetry (skewness). This property implies that 

extreme market movements, in either direction, will occur with greater frequency in 

practice than would be predicted by the normal distribution. For example, a 5% daily 

loss is observed to occur in equity markets approximately once every two years, while 

if returns were normally distributed, such a change would be expected only once in 

every one thousand years (Johansen and Sornette, 1999), given the estimated return 

variances. Clearly this is an important observation in finance since, under the 

normality assumption for returns, variance is widely used as a proxy for market risk. 

If however, asset returns are fat-tailed, this will lead to a systematic underestimate of 

the true riskiness of a portfolio, where risk is measured as the likelihood of achieving 

a loss greater than some threshold.  

 

The standard ARCH and GARCH models introduced by Engle (1982) and Bollerslev 

(1986) respectively allow normally distributed disturbances to have time varying 

(conditional) variance. Such models are able to generate data with unconditionally fat 

tails, but not sufficiently fat to capture all of the observed unconditional leptokurtosis 

in returns series. Engle and Bollerslev (1986) explore the Gaussian model further, and 

although conditional kurtosis is not of direct interest to their study, they derive the 

conditional kurtosis forecasts from a GARCH(1,1), process as a function of the 

conditional variance. Since the variance is dynamic (time-varying), so is the kurtosis. 

Their derivation is sufficient to illustrate a key point relevant to this paper: that since 

the normal distribution is characterised entirely by its first two moments, the 

behaviour of the kurtosis is entirely determined by that of the variance. 

 

The observation that GARCH models with normal disturbances cannot generate 

sufficient leptokurtosis to replicate that observed in actual data was in part the 

motivation for the study of Bollerslev (1987).  He developed a more general model 

that allowed the disturbances to have a transformed t-distribution so that extreme 

values, occurring more commonly than under a normal distribution, may be 

accommodated. However, whilst such a model can lead to sufficiently fat tails to 
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provide a realistic model for asset returns, the conditional kurtosis from such a model 

is tied to the conditional variance via a time-invariant degrees of freedom parameter. 

To introduce some notation, suppose that the conditional distribution of the series of 

interest, yt , t = 1, 2, …, T, is a transformed central t with conditional mean yt | t-1, 

variance ht | t-1 and degrees of freedom v, and let fv(εtψt-1) denote the density function 

for εt conditional upon all information available to time t-1. A GARCH-t model may 

thus be written 

 yt = γ0 + εt ,  εt  ψt-1 ∼ fv(εtψt-1) 

 ht | t-1 = α0 + α1εt-1
2 + α2 ht-1 | t-2      (1) 

where γ0, α0, α1, α2 are parameters to be estimated. 

 

From a finance perspective, consideration of the higher moments of portfolio return 

distributions is important to ensure that investors make optimal decisions given their 

tolerances for risk and, for example, so that fund management or trading rule 

performance is correctly appraised. Research by Chunhachinda et al. (1997), for 

instance, suggests that the incorporation of moments higher than the second into the 

investor’s portfolio decision causes a major change in the construction of the optimal 

combination of risky assets. Since higher moment deviations from normality are 

agreed to be non-negligible, there is no reason to suppose that they should be time-

invariant, other than for simplicity, and allowing them to be time-varying may 

improve their approximation to the actual return distributions. Failure to consider 

moments higher than the second or assuming that those moments are time-invariant 

could also lead to avoidably high approximation error. Nelson (1996), for example, 

plots the standardised residuals exceeding 4 in absolute value from an EGARCH fit to 

daily S&P 500 data, and finds that large residuals of either sign tend to bunch together 

through time. He argues that this finding implies evidence for time-varying kurtosis. 

 

Recent research by Harvey and Siddique (1999, 2000) has proposed and employed a 

model that allows for time-varying conditional skewness, based upon a non-central 

Student’s t-distribution. However, their approach does not model time-varying 

conditional kurtosis. We would argue that an examination the conditional fourth 

moment is of more importance than the third given the leptokurtosis that is almost 

universally observed in financial asset returns, irrespective of the frequency of 



 3

observation (although excess kurtosis is seen to diminish somewhat with temporal and 

cross-sectional aggregation of returns). On the other hand, some asset return 

distributions appear to be negatively skewed (implying a higher probability of 

negative returns than positive returns of the same order), while others are positively 

skewed. The degree and sign of the conditional skewness appears also to vary with 

sampling frequency and for given assets over time (see Harvey and Siddique, 1999, 

Figure 3B, for an illustration of the latter). Fernandez and Steel (1998) introduce a 

model for conditional skewness that can be applied to any continuous, unimodal and 

symmetric distribution. The method is then applied to a set of stock returns, although 

they examine only unconditional moments and an extension to allow for conditional 

GARCH-type dependence for the third moment would be non-trivial. Lambert and 

Laurent (2001) employ the Fernandez and Steel approach in the context of maximum 

likelihood estimation of a GARCH model. They do not, however, consider 

conditional third or fourth moments.  

 

Hansen (1994) develops a general model for autoregressive conditional density 

estimation, centred on a skewed version of the Student’s t density. The resulting 

formulation is rather complex and, whilst it allows for conditional skewness, the 

conditional kurtosis is not explicitly parameterised. Premaratne and Bera (2001) 

propose the use of a Pearson type IV distribution for the unconditional returns data, 

which is able to account for both asymmetry and extreme fat tails simultaneously, 

although they do not fully examine these in a conditional setting that allows the third 

and fourth moments to be time-varying. The various types of asymmetric conditional 

density function that are available for GARCH-type modelling are reviewed in Bond 

(2001). 

 

In this paper, we develop a model for autoregressive conditional kurtosis that permits 

the kurtosis to develop over time in a fashion that is not fixed with respect to the 

variance. This is achieved via a central t-distribution with time-varying degrees of 

freedom, so that the variance, degrees of freedom and hence kurtosis all vary over 

time, in a manner determined by the data. It is this allowance of the degrees of 

freedom parameter to vary over time that permits the relaxation of the relationship 

between the variance and kurtosis. It is worth noting at the outset that such a set up 

with a central t cannot produce asymmetries in the return distribution, although 
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incorporation of asymmetry terms in the conditional variance and conditional kurtosis 

equations can generate asymmetries in the unconditional return distribution. For the 

reasons above, and for its tractability and ease of subsequent model estimation, the 

restriction implied by the use of a central rather than a non-central t may not be 

undesirable. As Premaratne and Bera (2001) note, the non-central t involves the sum 

of an infinite series which enters the log-likelihood function and which makes 

computation exceedingly difficult. The Hansen (1994) approach allows for time-

varying skewness but requires the imposition of several ad hoc restrictions on the 

parameter values to permit estimation. These parameter restrictions are lifted in work 

by Jondeu and Rockinger (2000). 

 

We also propose a multivariate extension to the model that is based on a combination 

of transformed Student t variates. To our knowledge, this is the first study that allows 

for such cross-dependencies in fourth moments other than recent papers employing 

copulas (see, for example, Rockinger and Jondeu, 2001). 

 

The remainder of the paper is laid out as follows. Section 2 develops the univariate 

model for conditional kurtosis and discusses estimation issues, while Section 3 

describes the data that we employ to illustrate the model’s applicability. Section 4 

discusses the univariate results and their interpretation and Section 5 extends the 

model to a multivariate setting. Finally, Section 6 concludes and offers suggestions 

for further research. 

 

2.1 Univariate Model Development 

In order to obtain a model with freely varying conditional kurtosis as well as 

conditional variance, an approach based on that of Bollerslev (1987), but extended, is 

employed. Let tε , t=1,2,…,T, be independently distributed as central Student’s t 

variates with tν  degrees of freedom. Extending the work of Bollerslev (1987), 

consider a time varying transformation of tε , to result in a new process that may have 

any desired variance th and kurtosis tk . Let this be given by  

ttt ελε =* .         (2) 
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The *
tε  are the analogues of the disturbances of a t-GARCH model. Their conditional 

variance, ht = t,2µ  and conditional fourth moment, t,4µ , are given respectively by 

2
2

,2 −
=

t

t
tt ν

ν
λµ ;                  (3a) 

( )( )42

3 2
4

,4 −−
=

tt

t
tt νν

ν
λµ .                 (3b) 

Equations (3) arise from the moment generating function for a central t, where all odd 

moments are by definition zero. Rearranging equation (3a) gives the time-varying 

transformation as a function of the conditional variance and the time-varying degrees 

of freedom 

21
)2(







 −
=

t

tt
t v

vh
λ .        (4) 

Defining 2
,4 / ttt hk µ= , and substituting (4) into (3b) gives the conditional kurtosis as 

a function of the degrees of freedom at time t as 

  
( )
( )4

23

−
−

=
t

t
tk

ν
ν

.                            (5) 

Equation (5) can be rearranged to give the degrees of freedom as a function of the 

conditional kurtosis 

  
( )

3

322

−
−

=
t

t
t k

k
ν .        (6) 

and (6) can be substituted into (4) to give 

  
21

32 







−

=
t

tt
t k

hk
λ .        (7) 

Equations (5) to (7) show that the conditional variance and conditional kurtosis are 

not tied together in a fixed fashion and may thus vary freely over time, since kt is a 

function of vt only while ht also depends on λt. Since they are not functionally related, 

the terms th and tk  may be parameterised individually as desired. In order to estimate 

the parameters of these processes, note that the Jacobian of the 

transformation ttt ελε =* is 

tt

tJ
λε

ε 1

*
=

∂
∂

=        (8) 
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Taking the Student’s t density for tε , substituting ttt ελε =*  and multiplying by the 

Jacobian gives the density of *
tε : 

  ( ) ( )[ ]
[ ]( )( ) 21

22*2121

*

12

211
+

+Γ

+Γ
=

t

ttttt

t

t
tf ν

νλεννπ

ν
λ

ε .     (9) 

Substituting for λt in (9) and taking logarithms yields the log-likelihood for the tth 

observation (dropping constant terms): 

( )[ ]( ) [ ]( ) ( ) ( )

( )













−
+

+
−

−−−Γ−+Γ=

2
1log

2

1

2log
2

1
log

2

1
2log21log

2*

tt

tt

ttttt

h

hl

ν
εν

ννν

             (10) 

where vt is a function of kt, as given by (6). Maximisation of the log-likelihood 

function, ∑
=

T

t
tl

1

, yields the maximum likelihood estimates of all the parameters of the 

model. From (5), there exists a degrees of freedom restriction, 

  4>tν  

generated by the requirement for the existence of a fourth moment and hence equation 

(5) also implies that kt → 3 as vt → ∞ and kt → ∞ as vt → 4 from above. 

 

Many specifications of the variance and kurtosis equations are conceivable, most 

obviously they may be of the typical GARCH type, namely, 

  12

2*
110 −− ++= ttt hh αεαα ,              (11a) 

122
1

4*
1

10 −
−

− ++= t
t

t
t k

h
k β

ε
ββ ,              (11b) 

all coefficients being non-negative.  

 

To summarise, the model may be termed generalised autoregressive conditional 

heteroscedasticity and kurtosis (GARCHK), and may be described by the following 

equations. 

  *
0 tty εγ += ;                (12a) 

  ttt ελε =* , 
t

tt νε ~ ;               (12b) 

  12

2*
110 −− ++= ttt hh αεαα ;              (12c) 
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122
1

4*
1

10 −
−

− ++= t

t

t
t k

h
k β

ε
ββ ;              (12d) 

  
( )

3

322

−
−

=
t

t
t k

k
ν .               (12e) 

  
21

)2(







 −
=

t

tt
t v

vh
λ ;               (12f) 

All parameters are estimated using quasi-maximum likelihood with the BFGS 

algorithm.  

 

2.2 Development of a Test for Autoregressive Conditional Kurtosis 

At first blush, it may appear sensible to attempt the formulation of test for 

autoregressive conditional kurtosis in a similar vein to Engle’s TR2 Lagrange 

Multiplier test for conditional heteroscedasticity, defining, 
2

4

ˆ
ˆ

t

t
t

h
y

ε
= , and regressing it 

on p of its lagged values to test for autoregressive conditional kurtosis of order p. 

However, such an approach is inappropriate in the context of a student-t density since 

the TR2 approximate form for the LM statistic depends crucially on an assumption of 

conditionally normal disturbances. Therefore, in order to test whether there is 

evidence of autoregressive conditional kurtosis in the data, we revert to the 

application of a likelihood ratio test to the relevant estimated model parameters (β1 

and β2 in (12d)). The development of a form for the test that does not require 

estimation of the model is left to future research. 

 

2.3 Extensions of the Basic GARCHK Model 

There are several natural extensions of the model given by equations (12) that arise 

from an examination of the comparable GARCH literature. The simplest of these 

would be to increase the number of lags of the fourth power of the standardised error, 

2
1

4*
1 / −− tt hε , and of the conditional kurtosis in the same way that a GARCH(1,1) can be 

extended to a GARCH(p,q). We experimented with models of a higher order in the 

conditional kurtosis equation but all additional terms could be restricted to zero under 

a likelihood ratio test. This indicates that one lag of each of the fourth power of the 
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standardised error and of the conditional kurtosis is sufficient to capture all of the 

autoregressive conditional kurtosis in the data.  

 

The second obvious extension to make to the GARCHK model is to add additional 

terms to the conditional variance and conditional kurtosis equations that permit the 

next period values of these quantities to have asymmetric responses to the signs of the 

innovations, in the style of Glosten et al. (1993). This could be viewed as an 

alternative parameterisation for the skewness in the unconditional return distribution. 

It would also, of course, be plausible to specify logarithmic formulations for the 

conditional variance and kurtosis equations in the manner of Nelson (1991), although 

this possibility is not pursued here. Equations (12c) and (12d) thus become 

 
2*

11312

2*
110 −−−− +++= ttttt Ihh εααεαα ;            (12c′) 

2

4*
1

13122

4*
1

10
t

t
tt

t

t
t

h
Ik

h
k −

−−
− +++=

ε
ββ

ε
ββ ;                       (12d′) 

where It-1 is an indicator function taking the value 1 if εt-1
* is negative and zero 

otherwise, with all other parts of equations (12) remaining unchanged. Clearly, it 

would be possible to include the asymmetry term in either the conditional variance 

equation or the conditional kurtosis equation or both, and we opt for the latter.  

 

Engle et al. (1987) suggested that investors usually require compensation in the form 

of additional returns for taking on additional risk. Thus, a third intuitive extension of 

the GARCHK model would therefore be to allow the current return to depend on the 

current value of the conditional kurtosis as well as on the conditional standard 

deviation. Thus, equation (12a) becomes 

  *
4

2/1

30 tt
t

t k
y

h
y εγγγ +++= ;              (12a′) 

where y is the mean value of yt. Standard GARCH-M formulations use ht
1/2 in the 

conditional mean. This has units of returns but kt is unitless, so the conditional 

standard deviation is divided by the mean of the returns in order to ensure that the 

conditional standard deviation and conditional kurtosis terms in mean have the same 

scale. The scaled conditional standard deviation could also be viewed as the 

conditional coefficient of variation. We employ the mean value of y as the divisor 

rather than the current value, yt, since the latter takes on zero values for some of the 
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sample observations. Overall, therefore, both variables in (12a′) are unitless so that 

the coefficients γ3 and γ4 both have units of returns.  

 

2.4 Residual Standardisation and Moment Specification Testing 

Given the model, if it is capturing all of the relevant features of the data, certain 

moment relationships should hold on an appropriately standardised measure of the 

residuals. These can be tested on their sample moments. Effectively, the tests are of 

non-linear restrictions on the parameters of the model given the data, and can be 

regarded as mis-specification tests. The relevant forms for the tests will now be 

presented. 

 

Let θ  denote a k × 1 parameter vector (containing all model parameters) and 

( )r θ denote a J × 1 restrictions function. The form of test used is the Wald test. That 

is, the unrestricted model is estimated, the moment restrictions not being imposed, 

and the (joint) significance of departures from the restrictions calculated using the 

freely estimated parameters, tested. The null hypothesis of the test is: 

H0 : ( )r θ = 0.       (13) 

The test statistic is of the usual form. Let 

( )( )θ̂var r=Ω .         (14) 

Then the test statistic is given by 

( ) ( )W r r
T

= −$ $ $θ θΩ 1 .        (15) 

Under the null, W
a

J~ χ 2 , and so the null hypothesis is rejected if W J> χ α,
2 , where α is 

the size of the test. 

 

Consider first the case where a single  (J=1) moment restriction is applied. This would 

take the form 

( ) ( )∑
=

=
T

t
tym

T
r

1

1
θ ,       (16) 

where ty  is the tth observation. There will thus be a contribution from each 

observation (excluding the division by the sample size), of ( )tym . Substituting the 

estimated parameters: 
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( ) ( )∑
=

=
T

t
tym

T
r

1

ˆ
1

θ̂         (17) 

It remains to obtain the variance of ( )r $θ  so that the test statistic (15) may be 

constructed. Greene (2000) shows that this may be calculated using the derivatives of 

the log-likelihood function. Let the tth contribution to the log-likelihood function be 

( )lt θ , so that the log-likelihood itself is  

( ) ( )l lt
t

T
θ θ=

=
∑

1
.        (18) 

Now let θ i  be the ith element of the parameter vector, θ . Denote the derivative of 

( )lt θ  with respect to θ i  by 

( ) ( )∂ θ
∂θ

θ
l

dt

i
t i= , .        (19) 

The estimated analogues are 

( ) ( )∂ θ
∂θ

θ
θ θ

l
dt

i
t i

=

=
$

,
$ .       (20) 

These derivatives, one for each observation, may be stacked into a column, 

( )

( )
$

$

$

,

,

d

d

d
i

i

T i

=

















1 θ

θ
M .       (21) 

The columns for each i, i=1,2,...,k may then be put together into a T k×  matrix of 

derivatives,  

[ ]D d d

d d

d d
k

k

T T k

= =

















$ $

$ $

$ $

, ,

, ,

1

1 1 1

1

L

L

M M M

L

,     (22) 

where the (t,i)th element, $
,d t i , is ( )dt i,

$θ , the derivative of the tth contribution to the 

log-likelihood with respect to the ith element of the parameter vector. This is like a 

time series regressor data matrix and is used as such below. The variance-covariance 

matrix in (15), $Ω  (a scalar in this one moment restriction case), may then be 

calculated from the residual sum of squares of the regression of $m  (the values of 

elements of the moment restriction function by observation) on  $d1 , $d2 , ..., $dk , the 
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values of each of the derivatives of the log-likelihood, observation by observation. 

This residual sum of squares of this regression is given by 

( )R m m m D D D D mT T T T= −
−

$ $ $ $
1

.     (23) 

The required variance is then 

$Ω =
R

T 2
.         (24) 

 

Returning now to the multiple moment restriction case, generalisation is achieved by 

replacing a single column of observation by observation values of a moment 

restriction by columns generated using all of the moment restrictions. The J × 1 

restrictions function ( )r θ , might be written, 

( )
( )

( )

( )

( )




















=















=

∑

∑

=

=

T

t
tJ

T

t
t

J ym
T

ym
T

r

r

r

1

1
1

1

1

1

MM

θ

θ
θ .      (25) 

Substituting estimated parameters gives  

( )
( )

( )




















=

∑

∑

=

=

T

t
tJ

T

t
t

ym
T

ym
T

r

1

1
1

ˆ
1

ˆ
1

ˆ Mθ .         (26) 

The estimated moment values are given by a matrix whose jth column is 

( )

( )














=

Tj

j

j

ym

ym

m

ˆ

ˆ

ˆ
1

M ,       (27) 

This is the vector of observation by observation contributions to the jth moment 

restriction function before division by sample size. Let M be the following T J×  

matrix 

[ ]
( ) ( )

( ) ( )














==

TJT

J

J

ymym

ymym

mmM

ˆˆ

ˆˆ

ˆˆ

1

111

1

L

MMM

L

L .   (28) 

For convenience, write the (t,j)th element of this matrix as 

( )tjjt ymm ˆˆ , = .         (29) 
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Then $ ,mt j  is the contribution from the tth observation to the jth moment restriction 

function, before division by the sample size. As already stated, these elements are not 

all required to be zero, but the jth moment restriction states that the sum of the $ ,mt j  

across observations, t, should be zero. 

 

The variance-covariance matrix in (24), $Ω  (now a J J×  matrix), is a function of 

what is in effect, the residual sum of squares matrix (residual sums of squares and 

cross products of residuals) from the set of regressions of each of the J ( T × 1) 

columns $m j , j =1, 2, ..., J on all of the log-likelihood derivative columns,  $d1 , ..., $dk . 

This residual sum of squares matrix can be written, analogously to equation (13) as 

  ( )R M M M D D D D MT T T T= −
−1

,       (30) 

and the required variance-covariance matrix as 

$Ω =
1
2T

R .        (31) 

 

The intuition that can be gleaned from the test is that the values of the moment 

functions, ( )r j
$θ , are well determined if their observation by observation contributions 

are well explained by those of the derivatives of the log-likelihood function. That is, 

atypical restriction values must tend to be accompanied by atypical score values, in 

some direction. For the value of the restrictions functions to be well determined, 

deviations of individual observation contributions (around their average values) must 

correspond to deviations of the contributions to the derivatives of the log-likelihood 

function (the score) around their average of zero. This will lead to a small value of the 

variance-covariance matrix. The value of the test statistic will then be larger, and 

hence more likely to lead to rejection of the moment restrictions. Low correlation 

between moment restriction values and the score constitutes poorer determination of 

the value of the moment restrictions, whatever that value, and thus a reduced 

probability of rejection of the moment restrictions given a fixed value of the 

restrictions function. 
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The construction of analytical derivatives for a complex model such as that outlined 

above has not yet been achieved, so instead, all are based on the numerical 

approximation 

( ) ( ) ( )
δ

δδ
∂

∂
2

,...,,...,,...,,..., 11 nini

i

yyygyyyg

y

yg −−+
≈ ,   (32) 

for sufficiently small δ . The latter parameter is chosen following Greene (2000) as 

max[10-5,abs(θi)×10-5]. 

 

The only remaining issue is to determine the appropriate standardised form of the 

residuals that should be used as the basis for the test. It should be evident from the 

specification of the model of (12) that taking the residuals from the estimated 

GARCHK model and dividing them by the square root of the conditional variance, i.e. 

forming 2/1* ˆˆ tt hε , will in general not provide an independently distributed series. 

Such a procedure would be inappropriate since it would ignore any conditional 

kurtosis that was present in the data. Instead, a more appropriate approach would be to 

take the estimated residual from the model and to divide it by the contemporaneous 

estimated value of the transforming variable: tt λε ˆˆ* . Under correct model 

specification, the result will be a standardised measure that will be an independently 

distributed t-variate with vt degrees of freedom. From (5), it should also be clear that 

as the degrees of freedom increase towards infinity, the conditional kurtosis reduces 

to three and from (12e), λt → ht
1/2, and hence this new standardised residual becomes 

the usual measure employed to test GARCH model effectiveness, 2/1* ˆˆ tt hε . 

 

The quantity tttz λε ˆˆˆ *=  can then be used to apply conditional moment-based 

specification tests of the form proposed by Newey (1985) and Nelson (1991), and in a 

similar vein to those examined by Harvey and Siddique (1999); see also Greene 

(2000, pp493-496).  The orthogonality conditions examined in this paper are as 

follows 
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E[zt] = 0 

E[zt⋅zt-j] = 0 for j = 1, 2, 3, 4                                                                                   

E[{zt
2 – (vt / (vt – 2))}⋅{(zt-j

2 – (vt-j / (vt-j – 2))}] = 0 for j = 1, 2, 3, 4 

E[zt
3⋅zt-j

3] = 0 for j = 1, 2, 3, 4 

E[{zt
4-(3vt

2/((vt-2)(vt-4)))}⋅{zt-j
4-(3vt-j

2/((vt-j-2)(vt-j-4)))}] = 0 for j = 1, 2, 3, 4 

Thus there are a total of 17 conditions, which are evaluated separately and via a joint 

test. 

 

3. Data 

The data employed in this study comprise four financial time series – two equity 

indices (US Standard and Poor’s 500 and UK FTSE 100), and two bond indices (UK, 

US). The equity indices are total return indices where dividends have been added back 

to calculate the index values, while the bonds are both 10-year maturity benchmark 

bond indices. The daily sample spans the period 2 January 1990 to 14 June 2000, 

implying a total of 2727 observations. The series are transformed into continuously 

compounded returns by taking the natural logarithms of the price relatives in the usual 

fashion. 

 

Panel A of Table 1 presents summary statistics for the 4 series. Clearly, whilst all of 

the returns series show statistically significant evidence of leptokurtosis, the degree of 

unconditional skewness varies from one series to another. The FTSE 100 index 

returns are positively skewed but not significantly so. On the other hand, the S&P500 

returns and the US bond returns are significantly negatively skewed while the UK 

bond returns are negatively skewed but not significantly so. In all cases, the null 

hypothesis that the unconditional return distributions are normal is rejected 

convincingly. An application of the Ljung-Box Q* test using 5 lags of the returns 

suggest reasonable evidence of autocorrelation in the conditional mean. Closer 

examination of the autocorrelation and partial autocorrelation functions (not shown 

but available from the authors on request) suggested a first order AR (for UK equities, 

and both bond series) or a first-order MA (for the US equities) model as sufficient to 

capture this linear dependence. Engle’s (1982) LM test for ARCH is suggestive of 

highly significant volatility clustering effects in each case.  
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4. Results 

Panel B of Table 4 gives results for estimation of Bollerslev’s GARCH-t model with 

time-invariant kurtosis and degrees of freedom. The estimated degrees of freedom in 

each case can be calculated from a time-invariant version of (12e), and are 5.36, 6.45, 

6.15, and 5.56 for the US equities, UK equities, US bonds and UK bonds respectively. 

These values together with those for the conditional variance equations are plausible 

and in line with the conclusions of previous research and are again indicative of the 

fatness of the tails of the return distributions in each case. All series except the US 

bond returns demonstrate strong persistence of shocks to the conditional variance, as 

demonstrated by the closeness of the sum of α1 and α2 to unity. 

 

4.1 Results for Basic Model 

Table 2 presents the results from estimating the GARCHK model separately for each 

of the 4 series. First, it is evident that all of the conditional variance and conditional 

kurtosis coefficient values are positive as required. The parameter estimates 

concerning the conditional variance equation are entirely as expected: the persistence 

of shocks to volatility is high in most cases, with a higher coefficient value on the 

lagged conditional variance than the lagged squared error. The lagged kurtosis 

coefficient values are significant for all series, while the coefficients on the lagged 

fourth powers of the standardised error are only significant for the two equity series at 

the 5% level, and for the US bond returns at the 10% level. The α1 coefficient has 

often been termed the “volatility of variance” parameter in the GARCH literature, 

since it measures how much the conditional variance will move around over time in 

response to innovations. The corresponding coefficient in the conditional kurtosis 

equation, β1, could usefully be termed the “volatility of kurtosis” and would similarly 

measure the stability of the fitted conditional kurtosis in response to innovations. It is 

clear, for all four series, that the volatility of kurtosis is considerably greater than the 

corresponding volatility of variance parameters, suggesting that the fitted kurtoses are 

likely to be far less smooth than the fitted variances. The conditional kurtosis 

coefficients also show a high degree of persistence for the US bond series, although 

the persistence is overall far less apparent than in the corresponding conditional 

variance equations. In the case of the kurtosis equations, much of the persistence 

results from the lagged standardised innovation term than the lagged conditional 
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kurtosis, while almost all of the persistence in the conditional variance comes from 

the lagged conditional variance terms.  

 

The penultimate column of Table 2 presents the maximal value of the log-likelihood 

function for the model with GARCH and GARCHK. This can be compared with the 

last column of Panel B in Table 1 which gives the LLF values for the restricted model 

where β1 = 0 and β2 = 0. The final column presents the implied likelihood ratio test 

value for the restriction of the GARCHK model to have fixed kurtosis over time. This 

statistic will follows a χ2(2) under the null hypothesis, with critical value 5.99 at the 

5% level. Restrictions of the conditional kurtosis to be fixed are resoundingly rejected 

for all series except the UK bond returns, suggesting that there seems to be less 

evidence of conditional kurtosis in the latter, in contrast with the highly significant 

lagged conditional kurtosis term. This may be indicative, in the context of the 

complex non-linear optimisation that is required, that the overall model fit has only 

improved marginally upon inclusion of the β1 and β2 parameters as a result of a 

reduction in the goodness of fit of other parts of the model (although it is not apparent 

from the results which parts).  

  

For illustration, Figure 1 plots the fitted conditional variance and conditional kurtosis 

obtained for the FTSE returns by estimating equations (12). Although there are 

periods when the both the conditional variance and conditional kurtosis are both high, 

it is evident that the model has succeeded in enabling the kurtosis to develop a 

different dynamic pattern. In general, the conditional kurtosis is much more stable for 

most of the time than the variance, but has periods where it rises very substantially. 

Thus the conditional kurtosis appears to be fitting to the extreme events, as one may 

expect. Both the conditional variance and conditional kurtosis take on high values in 

the early 1990’s, but have historically low values for the 1993-96 period, before rising 

again towards the end of the sample. 

 

Figure 2 graphs the estimated degrees of freedom over time for the FTSE returns. The 

degrees of freedom never rises above 15 for the whole sample period, with an average 

of around 8, further indicating the fatness of the unconditional return distribution. 

Mirroring the conditional kurtosis, the degrees of freedom rises during the mid-1990’s 
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as the return distribution’s tails thin, before falling considerably in the late 1990’s, 

when it spends most of its time in the 4-8 range. It is also worth noting, however, that 

the typical range of values that the degree of freedom parameter takes over time are 

higher than the fixed unconditional estimate of 6.4 from the Bollerslev t model. This 

is suggestive that forcing the degree of freedom parameter to be fixed over time will 

lead to a measured tail fatness that is greater than the values it would take for most of 

the sample period if it were allowed to vary. Figure 3 plots the time-varying 

transformation parameter for the UK stock returns. The extent to which this varies 

over time is a measure of the extent to which the relationship between the conditional 

variance and the degrees of freedom varies over time. From (12f), it is evident that the 

transformation series must be non-negative. The value of λt is also less than unity for 

the majority of the sample period, and so from equation (12b), the transformation 

results in a shrinking of the t-variate relative to one that follows an untransformed t 

with vt degrees of freedom.  

 

For comparison, Figures 4 to 6 replicate Figures 1 to 3, but for the US Treasury bond 

series. First, considering Figures 1 and 4, it is evident by examining the ranges of 

values that the conditional variance and conditional kurtosis take, that the conditional 

variance is typically lower for the US bond series than for the UK equities, although 

the higher conditional kurtosis has peaks that are higher in the bond case. Unlike the 

equity series, the bond returns were relatively stable in the early 1990’s and at the end 

of our sample, while the conditional variance and conditional kurtosis rose 

substantially in the mid 1990’s. Figure 4 scales very differently from Figure 1. In the 

former case, one very large value of the kurtosis relative to its typical values has 

considerably changed the scaling, while there are no such extreme estimates for the 

US bonds. The fitted degree of freedom parameter for the US bonds (Figure 5) 

remains within a narrow range of values (4,7.2) for the whole sample period, leading 

the time-varying transformation parameter to also lie within a narrower range of 

values than was the case for UK equities. No restrictions are placed on the model that 

constrain the value of the degree of freedom parameter, other than that it must be 

greater than 4 at all times.  
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4.2 Results from Extensions of the Basic GARCHK Model 

The results of estimating equations (12a), (12b), (12c′), (12d′) and (12e) are presented 

in Table 3. This is the GARCHK model with asymmetries in the conditional mean 

and conditional kurtosis equations. Considering first the conditional variance 

asymmetry parameters, α3, they are statistically significant at the 1% level for all four 

series. Such results are consistent with previous studies of asymmetry in volatility. 

The asymmetries in conditional kurtosis appear to be, from a consideration of the t-

ratios, considerably less significant than those in conditional variance in all cases, 

although they do always have the expected positive sign. Thus, it can be said that 

negative innovations lead to higher (although not significantly so) future values of 

kurtosis than positive innovations of the same magnitude. The coefficient values on 

the asymmetry terms are bigger in the conditional kurtosis equation, ranging from 

0.01 to 0.6, indicating that the asymmetric effects are larger in magnitude, although 

not significant, compared with those in the conditional variance equation. The last two 

columns of Table 3 give the maximal values of the log-likelihood function for the 

GARCHK model with asymmetries in the conditional variance and conditional 

kurtosis equations, and the results of a likelihood ratio test of the restriction that the 

asymmetry terms in both equations are jointly zero. Such a restriction is rejected 

marginally for the US equity and UK bond series but not for the UK equities or US 

bonds. It is clear that asymmetries are very much stronger in conditional variance than 

conditional kurtosis, and that the results of the latter dilute those of the former in the 

joint test. The asymmetry terms in the conditional variance can capture the skewness 

in the unconditional distribution of returns, while it is less clear what the impact of 

asymmetry terms in the kurtosis equation would be on the unconditional distribution. 

 

In the context of equity markets, such asymmetries have been attributed to leverage 

effects – see, for example, Black (1976) or Christie (1982). The argument goes that as 

equity values fall, the relative weight attached to debt in a firm’s capital structure 

rises, ceteris paribus. This induces equity holders, who bear the residual risk of the 

firm, to perceive the stream of future income accruing to their portfolios as being 

relatively more risky. An alternative view is provided by the 'volatility-feedback' 

hypothesis. Assuming constant dividends, if expected returns increase when stock 

price volatility increases, then stock prices should fall when volatility rises. Whilst 
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one cannot appeal to such explanations of leverage effects in the context of 

asymmetries in other financial asset return time series, there is equally no reason to 

suppose that such asymmetries do not exist. In the context of exchange rates, for 

example, it is possible that good news for one currency will have a differential impact 

on the perceptions of investors compared with an equivalent amount of good news for 

the other.  

 

The results from estimating equations (12a′) together with (12b)-(12e) are presented 

in Table 4. This is the model with conditional variance and conditional kurtosis terms 

in the mean equation and asymmetries in the conditional variance and conditional 

kurtosis equations. The signs of the coefficients on both the conditional standard 

deviation and the conditional kurtosis terms in the mean equations are positive in all 

cases, suggesting that investors do require additional returns for accepting additional 

risk. Risk in this sense comprises both standard deviation and kurtosis, neither of 

which would be considered desirable by any rational investor if some fairly weak 

assumptions are made concerning the shape of the utility function (see Scott and 

Hovarth, 1980). Considering the conditional standard deviation terms in the mean 

equation however, none of these are significant, even at the 10% level. The 

conditional kurtosis terms in the mean equations are also insignificant, although the 

parameter estimates for the conditional kurtosis in mean are of the same order of 

magnitude as those of the conditional standard deviation in mean. It can also be seen 

from a comparison of Table 4 with Table 3 that the intercept coefficients in the 

conditional kurtosis equations in most cases rise, and the values of the asymmetry 

coefficients in the conditional kurtosis equation decrease upon adding the mean terms. 

This may be taken as evidence that the models excluding such terms in the mean are 

mis-specified, and that this failure to adequately parameterise the mean is resulting in 

misleading estimates of the higher moment dynamics. The penultimate column of 

Table 4 presents the values of the log-likelihood function for the model including 

conditional mean and asymmetry terms. Likelihood ratio tests of restrictions that 

neither the scaled conditional standard deviation nor the conditional kurtosis terms 

appear in the conditional mean are given in the last column of Table 4. The result for 

both tests is a rejection at the 1% level for the S&P returns but non-rejections for the 

other three series. It turns out that a re-estimation of the model of Table 4 but 
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excluding the AR or MA terms in the conditional mean results in statistically 

significant (and very slightly larger) coefficient values on the conditional standard 

deviation and conditional kurtosis terms in the mean equation. Since, in order for 

these coefficients to be interpretable as risk premia, there should not be lagged returns 

or an MA term in the mean, it should not be concluded that conditional kurtosis is not 

priced in the market. Collectively, these results suggest that it is not clear whether a 

better measure of total risk may be obtained by using a composite statistic including 

standard deviation and kurtosis, than by using standard deviation alone.  

 

4.2 Results of Moment-Based Specification Tests 

The results from an application of the moment-based specification tests described in 

Section 2.4 are given in Table 5 for the most general of the models that we consider, 

whose coefficient values were described in Table 4. There are 17 conditions in all. 

The first five conditions in Table 5 examine the specification of the conditional mean 

of the standardised residuals, the next 4 examine the conditional variance, the next 4 

the conditional third moment, and the last 4 the conditional fourth moment. If the 

model has captured all of the dynamic features of the first four moments of the returns 

series, none of the test statistics should be significantly different from zero. Table 5 

suggests some evidence of further structure in the conditional mean for the S&P and 

for both of the bond series. The covariance of the standardised residuals with their 

first lags are statistically significant only for the two bond series, while the covariance 

with the third lag is significant for the US equities. This evidence of further linear 

structure is not consistent with the acf and pacf results obtained from the raw (i.e. the 

original unstandardised) returns, but may be symptomatic of the difficulty in 

estimating the model also containing conditional standard deviation and conditional 

kurtosis terms in the mean equation. There is evidence that the dependence in the 

conditional variance has not been fully captured in the cases of the S&P 500, and the 

US and UK bond series. However, there is virtually no evidence for temporal 

dependencies in the conditional third moment that would give motivation for the 

consideration of a conditional skewness model. There is also no evidence of 

remaining unparameterised temporal structure in the conditional fourth moment. The 

joint test of significance for all 17 conditions shows a rejection in all four cases as a 

result of the small numbers of significant individual moment statistics. Thus, overall, 

there still remain some features of the data that have apparently not been fully 
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captured by the model, consistent with the results of Harvey and Siddique (1999). 

This should not, however, be taken as evidence that the model proposed here is less 

well specified than those described in previous studies. Rather, since virtually none of 

the studies in the GARCH literature have employed specification tests, our results 

may be indicative that standard GARCH(1,1,) models are not sufficient to fully 

capture the temporal dependencies in financial asset return series. Obtaining a model 

that is able to capture such features in their entirety is an open question for future 

research. 

 

5. Development of a Multivariate Generalised Autoregressive Conditionally 

Heteroscedastic and Leptokurtic Model using the Student’s t-distribution 

The objective of this section is to obtain a multivariate t-distribution with separate 

time-varying degrees of freedom for every element of the random variable vector. 

This is essentially achieved by multiplying together the densities of independent t-

variates and then applying a time-varying linear transformation to the vector of 

random variables to achieve the desired variance-covariance matrix and kurtosis. The 

details of this derivation are now presented. 

 

5.1 General Transformation of Independent Scalar Student-t’s 

Let xt denote a n × 1 vector of independent Student’s t variates, each with degrees of 

freedom vi,t. Note that, to avoid confusion, the notation below differs slightly from 

that employed above in the univariate case. This random vector may be transformed 

to have whatever variance-covariance structure is required. Let tΛ  be a non-singular 

n n×  matrix, and define the transformed random vector 

  ttt xz Λ= ,       (33) 

where 

  { }tjit ,,λ=Λ .       (34) 

Let f(xi,t | vi,t ) be the probability density function of xi,t. Its parameters are the vector 

of n degrees of freedom and the 2n  elements of the transformation matrix, tΛ . These 

parameters will be used model both the variance-covariance structure of tz , and its 

kurtosis. The density of xi,t is given by 
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Denoting the (joint) density of xt as f(xt | vt), 
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The density of the transformed t, zt, will be given by the standard Jacobian. The 

Jacobian of the transformation in equation (33) is 

 
t

tt abs
absJ

Λ
=Λ= − 11       (37) 

The density of zt is then found by replacing xt by tt z1−Λ  (element by element) in (36) 

and multiplying by the Jacobian. Thus, the density of zt will be given by 
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where ji
t
,Λ  is the i, jth element of 1−Λ t .  

 

5.2 Constraints on Modelling Variance-Covariance and Kurtosis 

There are n n( )+ 1 2  variance-covariance parameters, leaving only n n( )+ 1 2  to 

explicitly model the kurtosis. In order to ensure identification, typically, using integer 

powers, there would be 5 2 2n n! ( !( )!)−  fourth moments of the form ( )s
tj

r
ti zzE ,, , where 

r s, ≥ 0  and r s+ = 4 . Considering products of powers of three or more variables 

(with powers summing to 4) generates even more moments to account for. It is 

therefore necessary to make a selection of fourth order moments to model (either as 

the moments themselves or standardised to give the kurtosis). 

 

One appealing way of restricting the quantities modelled so as to number n n( )+ 1 2 is 

to restrict attention to the variance-covariance matrix of the squares of the tiz , . Since 

this is an n n×  variance-covariance matrix, it has the required number of parameters. 

They are all of the form ( )s
tj

r
ti zzE ,, , where r s, , ,= 0 2 4  and r s+ = 4 . To illustrate, in 

the bivariate case, the moments modelled would be ( )4
,1 tzE , ( )2

,2
2
,1 tt zzE , and ( )4

,2 tzE . For 
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convenience, the covariances of the squares will be referred to as cokurtoses (if they 

are in a standardised form, or cross-fourth moments when unstandardised). Apart 

from all those fourth order moments involving products of three or more random 

variables, the pairwise moments not modelled are ( )tt zzE ,2
3
,1  and ( )3

,2,1 tt zzE . The values 

of these ‘missing’ moments will be functions of those modelled. 

 

Clearly, the choice made here, to model those fourth order moments that are the 

elements of the variance-covariance matrix of the squares of the process, is not the 

only choice that could be made. It is however appealing in the context of GARCH 

models, and is structurally useful in the context of financial applications, as discussed 

below.  

 

5.3 Modelling Equations 

The density is in terms of the elements of the transformation matrix and the degrees of 

freedom. The modelling will be in terms of the variance-covariance and the kurtosis 

of the process. It is therefore necessary to establish the mapping between the 

parameters of interest and those of the density. 

 

Variance-Covariance Equations 

The variance-covariance matrix of the transformed process is  

  t
T

txttz ΛΣΛ=Σ ,, ,                (39) 

where the i j th,  element of tx,Σ  is ( )2,, −titi νν  for i=j and zero otherwise. Denoting 

the i j th,  element of tz ,Σ  as tjih ,, , these elements are given by 
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= −

=
n

k tk
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λ  ,              (40a) 
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Kurtosis Equations 

Exploiting the fact that the odd moments of the underlying t-variates, tix , , are zero, 

that they are independent, and that ( ) ( )( )423 ,,
2
,

4
, −−= titititixE ννν , leads to the fourth 

moment equations as follows: 
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for i,m=1,...,n, i m≠ . 

 

The Bivariate Case as an Illustration 

For simplicity, the ensuing analysis will restrict attention to the bivariate case (n=2). 

Then the equations to solve - (40a), (40b), (41a), and (41b), become: 

Variances 
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Covariance 
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Fourth moment 
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Co-fourth moment 
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5.4 Solving the Equations 

It is required to solve (42a)-(42f), for the degrees of freedom and transformation 

parameters in terms of the moments. While in principle, this is possible, numerically 

at least, it is likely to be computationally burdensome. In a maximum likelihood 

setting, the equations have to be solved for each observation and for each evaluation 

of the log-likelihood required in the process of optimisation. For this reason, a further 

simplification is suggested. 

 

To reduce the size of the problem, restrictions may be imposed on the transformation 

matrix. This means that fewer moments may be modelled - one fewer for each free 

transformation parameter lost. Even so, in order to make the problem more tractable, 

the requirement to directly model the co-fourth moment may be dropped, so that its 

value will follow from those of other parameters calculated from the relationships 

generated by the remaining moment equations. Relaxing the requirement to model the 

co-fourth moment reduces the number moment equations by ( )n n − 1 2 , requiring the 

same reduction in the number of free parameters of the transformation matrix. Two 

obvious possible choices are to make the matrix symmetric, or to make it triangular. 

In the former case, the equations remain complex. However, in the triangular case, 

considerable simplifications are available, resulting in analytical solutions for the 

density parameters in terms of the moments. In all that follows, we employ the 

triangular approach, and therefore the transformation matrix is upper triangular, so 

that 

  0,, =tjiλ  for i j> .                 (43) 

It is easiest to illustrate the impact this has in the bivariate case, and the remainder of 

this paper focuses on the bivariate case only. 
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The Bivariate Case with Upper Triangular Transformation Matrix 

The equations to be solved are (42a)-(42d). The co-fourth moment equation, (42e) 

will be returned to later, once the other parameters have been solved for. Imposing an 

upper triangular tΛ  in this case simply means setting 0,1,2 =tλ . Substituting this into 

(42a)-(42d) results in the following equations. 

Variances 
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Covariance 
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Since this paper considers models for conditional kurtosis rather than the conditional 

fourth moment, equations for the former are obtained by taking (44d) and (44e) and 

dividing them by the squares of their respective conditional variances from (44a) and 

(44b): 
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and 
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Equations (44) can now be solved - that is, expressions may be obtained for the 

degrees of freedom parameters and the transformation parameters in terms of the 

moments. The solutions are obtained as follows. 
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It follows directly by rearranging (44e′) that  
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From (45d′), and substituting in for the transformation parameters, 
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Rearranging (44d′′) and substituting for v2,t from (45d), 
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Equations (45d) and (45e) can then be substituted back into (45a), (45b), (45c) to 

obtain the solutions for the non-zero transformation matrix parameters in terms of the 

conditional kurtoses and conditional variances if desired. Finally, using these 

solutions and the restriction that 0,1,2 =tλ , equation (42f) can be used to obtain a 

value for the co-fourth moment 
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The co-fourth moment is clearly related to the covariance between the sample 

variances of the two series in the bivariate system1. As such, this series is could be of 

particular interest in finance, where it is important to know whether variances move 

together over time or can be viewed as operating relatively independently of one 

another. Multivariate GARCH models, by contrast, consider only co-movements 

between the levels of the series; it appears to be a common misconception that 

multivariate GARCH models consider relationships between the variances of the 

processes.  

 

In the bivariate case with the restriction imposed, the log-likelihood function is 

obtained by taking the natural logarithm of (38) and can be written as 
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5.5 Results 

The results obtained from estimating the bivariate autoregressive conditional 

heteroscedastic and conditionally leptokurtic model (which will be referred to using 

the acronym MGARCHK) are presented in Table 6. Two separate estimations are 

conducted: one for the two equity series in a system and one for the bond series. The 

univariate coefficient estimates described above are used as starting values for 

optimisation of the multivariate model. The coefficient estimates in the conditional 

variance and conditional kurtosis equations are broadly similar to those obtained from 

univariate model estimation, but a set of coefficients for the conditional covariances 

are also estimated. The last two rows of Panels A and B show the conditional 

covariance parameter estimates between the two stock series and between the two 

bond series respectively. The conditional covariances for the equities are slightly 

smoother and less persistent, shown by the smaller values of the δ1 and δ2 coefficients 

                                                        
1 Specifically, co-fourth moment measures the relationship between the squares of the residuals, and 
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respectively, than the conditional variances are, while the conditional covariance 

estimates for the bond system are similar to those of the variances.  

 

Figure 7 plots the conditional covariances between the two sets of bond returns. The 

estimated covariance is fairly smooth over time, but is larger on average and more 

volatile during 1990 and mid 1994, while it reaches a peak of over 5 times its average 

value in October 1998. Figure 8 plots the co-fourth moment between the equities, 

together with the two fitted conditional variance series. There is a very strong 

correlation between the variances, which move closely together over time, although 

the UK equity market appears to be on average more volatile overall from the plot 

(although its estimated unconditional variance is slightly lower). The fitted UK 

conditional variance is particularly high in September 1990, April 1992 and 

September 1992, while both markets are volatile in August-September 1998 and the 

US is more volatile in April 2000. The conditional co-fourth moment series, however, 

takes on values close to unity most of the time but also comprises a small number of 

very large values which are orders of magnitude greater than the average and make it 

harder to visualise the day to day variation. It is evident from the equation for the co-

fourth moment, µ4,1,2,t that its values will be large when (assuming all else is constant) 

either h1,1,t or h2,2,t are large, or when v2,t ↓4. If the equation is suitably rearranged, it is 

also possible to show that µ4,1,2,t also varies positively with h1,2,t. Over the 10-year 

sample period, a total of 5 daily observations have co-fourth moment values larger 

than 10: 28 October 1997, 28 August 1998, 31 August 1998, 5 January 2000, and 17 

April 2000. All of these days witnessed extreme movements in both equity markets, 

except for 28 August 1998 where the UK return was zero since the market was closed 

due to a public holiday. These 5 observations are therefore removed and the 3 series 

re-plotted in Figure 92. The high degree of association between the conditional 

variances and the conditional co-fourth moment can now be seen. In general, extreme 

negative returns appear to result in increased variances, increased covariance, 

increased co-fourth moment and a fall in the degree of freedom parameters to values 

very close to 4. However, the co-fourth moment interestingly appears to have 

increased by more during the last three and a half years of the sample than either of 

                                                                                                                                                               
thus the analogy with the co-movement between the variances is not perfect. 
2 Note that these points are still included in all of the estimations – they are simply removed from the 
plots to make the day to day variations easier to see. 
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the two variances, while the degree of freedom estimates for both the US and the UK 

fell relative to their historical averages. This suggests that the conditional variance is 

not sufficient to describe the dynamics of the series in the late 1990’s, and that the 

series have become more fat-tailed and therefore further from being normally 

distributed over time. This fact is also evident from the relatively small and stable 

values that the conditional co-fourth moment takes on (typically in the range 0.3-0.7), 

while it jumps occasionally to values that are twenty times this – jumps that are far 

greater than those of the conditional variances.  

 

Finally, Figure 10 presents a scatter plot of the conditional co-fourth moment against 

the conditional co-variance for the equity returns (after the five largest values of the 

co-fourth moment are removed). The positive relationship between the two series is 

clearly evident and indeed, the correlation between them (after the 5 extreme 

observations are removed) is 71.2%, while the correlations of µ4,1,2,t with the US and 

UK conditional variances are 76.3% and 78% respectively. Further, a quadratic 

relationship between the co-fourth moment and the conditional covariance is evident 

from the lower part of the “frontier” that appears. A plot of the co-fourth moment 

against the square of the conditional covariance (not shown here) demonstrates a more 

linear relationship. 

 

It would be possible to further extend the model to allow for asymmetries in the 

conditional variance, covariance, or kurtosis equations, or to allow for feedback 

between these series and the conditional mean. These generalisations, together with 

an application of the specification testing methodology outlined above, are not 

pursued further here in the context of the multivariate model and are left for future 

research. It would also be of interest to explicitly examine the co-moments that were 

left unmodelled above of the form E(zi
3zj), and so on, although this would 

considerably increase the complexity of the model and would require numerically 

solving for the time-varying transformation parameters at each iteration in the 

optimisation. Clearly, then, there is a trade-off between flexibility and simplicity and 

we have leaned towards the latter, with the result that our model is estimable using 

standard maximum likelihood methods.   
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6. Conclusions 

This paper has proposed and estimated a model for conditional kurtosis. The model is 

based on the approach of Bollerslev (1987), but its novelty lies in its ability to allow 

the conditional kurtosis to develop in a fashion that is not fixed to the conditional 

variance. This occurs via a time-varying degree of freedom parameter. The model was 

applied to a set of four financial asset return time series, and the results indicate strong 

evidence for the presence of “GARCH-style” dependence in the conditional kurtosis, 

suggesting the presence of a hitherto unexplored phenomenon in such series. 

 

Several extensions to the basic model were proposed, including considerations of 

asymmetries in the relationship between the sign of the innovations and the size of the 

next period conditional kurtosis, and of a possible feedback from the kurtosis to the 

returns. Evidence for these relationships appeared to be weaker in the context of 

conditional kurtosis than was the case for the conditional variance.  Finally, a 

multivariate version of the model was described, which was constructed from a set of 

independent t-variates that were multiplied together and then subjected to a time-

varying linear transformation to achieve the desired variance-covariance matrix and 

kurtosis. This approach not only allows for the conditional co-variance to be time-

varying as a standard multivariate GARCH approach would, but also permits a 

consideration of the co-fourth moment, which is the covariance between the variances 

of the series.  

 

The research described above could be usefully extended in a number of different 

directions. First, the models proposed could be used to produce conditional kurtosis 

forecasts. These predictions may be useful – for example in the pricing of some 

classes of financial asset, such as options on options that require estimates of the 

“variance of a variance”. This quantity could be obtained from the forecasts of 

conditional kurtosis, and the option prices obtained compared with those from simpler 

approaches. Second, it may be the case that models allowing for dynamic higher 

moments can better describe the distributional properties of financial asset returns, 

especially when measured at high frequency, than less complex models that do not. 

Third, models containing feedback terms from the conditional variance and kurtosis to 

the conditional mean (“GARCHK-M” models) may, when appropriately formulated, 

be used to obtain separate estimates of the market-required risk premia for accepting 
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variance (or standard deviation) and kurtosis risk. GARCHK-M models could then be 

used in portfolio construction or in investment performance appraisal to evaluate 

whether the trade-off between mean, variance, and kurtosis that is implicit from the 

series of returns to the chosen portfolio was an optimal one given the market-required 

returns for each type of risk. Finally, further exploration of the multivariate version of 

the model should shed light on the co-relationships between the moments of each 

series employed in the system, which is likely to be of relevance in the context of 

portfolio construction or financial risk management. 
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Table 1: Summary Statistics and Model Estimates for GARCH with fixed degrees of 
freedom 

Panel A: Summary Statistics 
 Mean Variance Skewness Kurtosis 

(excess) 
BJ♣ 

Normality 
Ljung-Box 

Q*(5) 
ARCH(5) 

Equities        
S&P500 0.052 0.842 -0.345** 5.415** 3385.130** 12.754* 255.253** 
FTSE 100 0.034 0.663 0.014 2.826** 906.954** 29.024** 274.823** 
        
Bonds         
US 0.005 0.279 -0.305** 1.957** 477.062** 19.961** 16.649** 
UK  0.016 0.267 -0.020 3.736** 1585.630** 12.226* 78.74** 

 
Panel B: Estimates for GARCH with fixed degrees of freedom 

  **
12110 tttt yy εεγγγ +++= −−               (12a) 

  ttt ελε =* , 
t

tt νε ~                (12b) 

  12

2*
110 −− ++= ttt hh αεαα               (12c) 

0β=tk                 (12d) 

 γ0 γ1 γ2 α0 α1 α2 β0 LLF 
Equities         
S&P500 0.060 

(0.014)** 
- 0.034 

(0.024) 
0.043 

(0.005)** 
0.286 

(0.015)** 
0.730 

(0.008)** 
7.404 

(2.126)** 
-1736.96 

FTSE 100 0.031 
(0.012)* 

0.063 
(0.022)** 

- 0.057 
(0.004)** 

0.273 
(0.014)** 

0.711 
(0.009)** 

5.449 
(1.319)** 

-1517.63 

         
Bonds          
US 0.0116 

(0.009) 
0.036 

(0.019) 
- 0.172 

(0.006)** 
0.019 

(0.012) 
0.384 

(0.020)** 
5.791 

(0.799)** 
-495.74 

UK  0.0249 
(0.008)** 

0.043 
(0.019)* 

- 0.004 
(0.001)** 

0.045 
(0.002)** 

0.938 
(0.002)** 

6.846 
(0.683)** 

-279.36 

Notes: Standard errors are shown in parentheses. ♣ The Bera-Jarque (BJ) normality test is 
asymptotically distributed as a χ2(2) variate under the null of normality while the Ljung-Box and 
ARCH tests are asymptotically distributed as χ2(5) variates under their respective null hypotheses. The 
5% χ2(2) and χ2(5) critical values are respectively 5.991 and 11.071, and at the 1% level, the critical 
values are 9.210 and 15.086 respectively. * and ** denote significance at the 5% and 1% levels 
respectively; LLF denotes the maximal value of the log-likelihood function. 
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Table 2: Conditional Variance & Kurtosis 

Model: **
12110 tttt yy εεγγγ +++= −− , 12

2*
110 −− ++= ttt hh αεαα , tt ελε =

tνε 122
1

4*
1

10 −
−

− ++= t

t

t
t k

h
k β

ε
ββ  

 γ0 γ1 γ2 α0 α1 α2 β0 β1 β2 LLF LR 
021 == ββ  

Equities            
S&P500 0.060 

(0.014)** 
- 0.021 

(0.020) 
0.098 

(0.005)** 
0.023 

(0.002)** 
0.872 

(0.003)** 
5.041 

(0.509)** 
0.412 

(0.176)* 
0.171 

(0.090)* 
-1689.16 95.60** 

FTSE 100 0.036 
(0.014)** 

0.081 
(0.020)** 

- 0.097 
(0.005)** 

0.023 
(0.002)** 

0.865 
(0.004)** 

2.662 
(0.164)** 

0.309 
(0.156)* 

0.285 
(0.039)** 

-1471.18 92.90** 

Bonds             
US 0.015 

(0.009)** 
0.040 

(0.018)* 
- 0.044 

(0.001)** 
0.057 

(0.005)** 
0.786 

(0.004)** 
3.314 

(0.110)** 
0.545 

(0.286) 
0.324 

(0.027)** 
-485.96 19.56** 

UK  0.023 
(0.008)** 

0.043 
(0.019)* 

- 0.005 
(0.001)** 

0.050 
(0.002)** 

0.932 
(0.002)** 

4.667 
(1.225)** 

0.222 
(0.404) 

0.379 
(0.132)** 

-277.72 3.28 

Notes: Standard errors are shown in parentheses. * and ** denote significance at the 5% and 1% levels respectively. LLF denotes the maximal value of the log-likelihood 
function, while LR denotes the value of the likelihood ratio test statistic. The χ2(2) critical values are 5.99 and 9.21 at the 5% and 1% levels respectively. 
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Table 3: Conditional Variance & Kurtosis – Asymmetric 

Model: **
12110 tttt yy εεγγγ +++= −− , ttt ελε =* , 

t
tt νε ~ , 

2*
11312

2*
110 −−−− +++= ttttt Ihh εααεαα , 

2
1

4*
1

13122
1

4*
1

10
−

−
−−

−

− +++=
t

t
tt

t

t
t

h
Ik

h
k

ε
ββ

ε
ββ  

 γ0 γ1 γ2 α0 α1 α2 α3 β0 β1 β2 β3 LLF LR: 03 =α  

and 03 =β  

Equities              
S&P500 0.048 

(0.013)** 
- 0.031 

(0.023) 
0.025 

(0.003)** 
0.081 

(0.008)** 
0.816 

(0.005)** 
0.164 

(0.016)** 
5.348 

(0.566)** 
0.419 

(0.151)** 
0.209 

(0.100)* 
0.606 

(0.318) 
-1685.66 7.00** 

FTSE 100 0.027 
(0.012)* 

0.079 
(0.020)** 

- 0.026 
(0.002)** 

0.080 
(0.006)** 

0.819 
(0.005)** 

0.140 
(0.014)** 

2.239 
(0.161)** 

0.444 
(0.136) 

0.370 
(0.036)** 

0.500 
(0.330) 

-1469.76 2.84 

Bonds               
US 0.008 

(0.009) 
0.039 

(0.019)** 
- 0.062 

(0.002)** 
0.013 

(0.009) 
0.729 

(0.009)** 
0.098 

(0.018)** 
4.640 

(0.912)** 
0.356 

(0.425) 
0.139 

(0.125) 
0.291 

(0.865) 
-484.35 3.22 

UK  0.017 
(0.008)* 

0.054 
(0.018)** 

- 0.005 
(0.001)** 

0.024 
(0.002)** 

0.937 
(0.002) 

0.045 
(0.005)** 

4.610 
(2.000)* 

0.021 
(0.767) 

0.519 
(0.149)** 

0.012 
(1.890) 

-274.61 6.22* 

Notes: Standard errors are shown in parentheses. * and ** denote significance at the 5% and 1% levels respectively. LLF denotes the maximal value of the log-likelihood 
function, while LR denotes the value of the likelihood ratio test statistic. The χ2(2) critical values are 5.99 and 9.21 at the 5% and 1% levels respectively. 
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Table 4: Asymmetric Conditional Variance & Kurtosis – GARCH and Kurtosis in mean 

Model: *
4

2/1

3
*

12110 tt
t

ttt k
y

h
yy εγγεγγγ +++++= −− ,     ttt ελε =* , 

t
tt νε ~ ,  

2*
11312

2*
110 −−−− +++= ttttt Ihh εααεαα ,     

2
1

4*
1

13122
1

4*
1

10
−

−
−−

−

− +++=
t

t
tt

t

t
t

h
Ik

h
k

ε
ββ

ε
ββ  

 γ0 γ1 γ2 γ3 γ4 α0 α1 α2 α3 β0 β1 β2 β3 LLF LR: 03 =γ  

and 04 =γ  

Equities                
S&P500 0.028 

(0.013)** 
- 0.020 

(0.021) 
0.0010 

(0.0009) 
0.0003 

(0.0012) 
0.025 

(0.003)** 
0.079 

(0.007)** 
0.083 

(0.005)** 
0.147 

(0.014)** 
5.331 

(0.458)** 
0.702 

(0.375) 
0.281 

(0.124)* 
0.170 

(0.289) 
-1676.9 17.44** 

FTSE 
100 

0.015 
(0.012) 

0.089 
(0.020)** 

- 0.0003 
(0.0006) 

0.0001 
(0.0011) 

0.024 
(0.002)** 

0.078 
(0.006)** 

0.826 
(0.005)** 

0.136 
(0.013) 

2.021 
(0.105)** 

0.285 
(0.117)** 

0.437 
(0.030)** 

0.176 
(0.172) 

-1469.3 1.00 

Bonds                 
US 0.014 

(0.009) 
0.052 

(0.018)** 
- 0.0001 

(0.0001) 
0.0003 

(0.0009) 
0.053 

(0.002)** 
0.007 

(0.008) 
0.766 

(0.007)** 
0.078 

(0.015)** 
4.294 

(0.734)** 
0.531 

(0.529) 
0.268 

(0.106)* 
0.027 

(0.058) 
-482.3 4.18 

UK  0.002 
(0.008) 

0.044 
(0.020)* 

- 0.0004 
(0.0003) 

0.0006 
(0.0006) 

0.005 
(0.001)** 

0.026 
(0.002)** 

0.932 
(0.002)** 

0.052 
(0.005)** 

6.799 
(0.127)** 

0.161 
(0.100) 

0.244 
(0.053)** 

0.074 
(0.779) 

-274.4 0.44 

Notes: Standard errors are shown in parentheses. * and ** denote significance at the 5% and 1% levels respectively. LLF denotes the maximal value of the log-likelihood 
function, while LR denotes the value of the likelihood ratio test statistic. The χ2(2) critical values are 5.99 and 9.21 at the 5% and 1% levels respectively. 
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Table 5: Moment Specification Tests 
 

Orthogonality Conditions  US  
S&P500 

UK  
FTSE100 

US  
T-Bond 

UK  
T-Bond 

1. E[zt] = 0 -0.012 
(1.621) 

0.010 
(1.910) 

-0.016 
(3.825) 

-0.004 
(0.194) 

2. E[zt⋅zt-1] = 0 0.076** 
(35.045) 

0.018 
(2.381) 

0.028** 
(7.457) 

0.038** 
(7.249) 

3. E[zt⋅zt-2] = 0 0.037 
(1.580) 

0.026 
(0.098) 

0.029 
(0.965) 

0.038 
(2.00) 

4. E[zt⋅zt-3] = 0 -0.087** 
(9.218) 

-0.014 
(0.281) 

-0.052 
(3.264) 

-0.029 
(1.022) 

5. E[zt⋅zt-4] = 0 -0.044 
(2.282) 

0.023 
(0.837) 

-0.053 
(3.173) 

0.033 
(1.267) 

6. E[(zt
2 – (vt / (vt – 2)))(zt-1

2 – (vt-1 / (vt-1 – 2)))] = 0 -0.643** 
(19.298) 

-0.277 
(3.317) 

-0.443** 
(21.188) 

-0.146 
(0.419) 

7. E[(zt
2 – (vt / (vt – 2)))(zt-2

2 – (vt-2 / (vt-2 – 2)))] = 0 -0.108 
(0.222) 

-0.231* 
(4.761) 

-0.066 
(0.312) 

-0.336** 
(8.739) 

8. E[(zt
2 – (vt / (vt – 2)))(zt-3

2 – (vt-3 / (vt-3 – 2)))] = 0 -0.453** 
(9.421) 

-0.111 
(0.924) 

-0.160 
(1.169) 

-0.066 
(0.176) 

9. E[(zt
2 – (vt / (vt – 2)))(zt-4

2 – (vt-4 / (vt-4 – 2)))] = 0 -0.321* 
(4.522) 

-0.338** 
(12.636) 

0.099 
(0.580) 

-0.006 
(0.001) 

10. E[zt
3⋅zt-1

3] = 0 4.449* 
(4.339) 

3.514 
(1.276) 

2.442 
(2.524) 

8.981 
(2.774) 

11. E[zt
3⋅zt-2

3] = 0 10.659* 
(4.467) 

0.915 
(0.617) 

0.986 
(0.306) 

2.002 
(1.948) 

12. E[zt
3⋅zt-3

3] = 0 -2.702 
(1.195) 

-0.862 
(0.220) 

-1.661 
(0.308) 

2.576 
(1.276) 

13. E[zt
3⋅zt-4

3] = 0 -2.632 
(1.634) 

0.990 
(1.616) 

-3.041 
(2.101) 

5.239 
(1.769) 

14. E[(zt
4-(3vt

2/((vt-2)(vt-4))))⋅(zt-1
4-(3vt-1

2/((vt-1-2)(vt-1-4))))] = 0 -17237 
(1.011) 

-4721.708 
(1.096) 

-4595.259 
(3.497) 

-14829* 
(4.323) 

15. E[(zt
4-(3vt

2/((vt-2)(vt-4))))⋅(zt-2
4-(3vt-2

2/((vt-2-2)(vt-2-4))))] = 0 -3879.381 
(0.633) 

-2090.880 
(1.071) 

-1045.669 
(1.184) 

-540.994 
(2.833) 

16. E[(zt
4-(3vt

2/((vt-2)(vt-4))))⋅(zt-3
4-(3vt-3

2/((vt-3-2)(vt-3-4))))] = 0 -739.302 
(0.204) 

-808.454 
(0.854) 

-65.157 
(0.057) 

-28.075 
(0.061) 

17. E[(zt
4-(3vt

2/((vt-2)(vt-4))))⋅(zt-4
4-(3vt-4

2/((vt-4-2)(vt-4-4))))] = 0 291.682 
(0.313) 

-397.981 
(1.015) 

144.793 
(1.887) 

19.461 
(0.034) 

Test statistic for joint test of all moment restrictions 1 to 17 171.981** 63.393** 79.599** 48.396** 

Notes: Orthogonality conditions are based on  tttz λε ˆ/ˆˆ *= . * and ** denote significance at the 5% 

and 1% levels respectively. Cell entries refer to sample averages with test statistics in parentheses. The 
latter follow a χ2(1) distribution under the null hypothesis in each case.  The joint test follows a χ2(17) 
under the null that all four moments are correctly specified. The critical values for the χ2(20) are 27.58 
and 33.41 at the 5% and 1% levels respectively. 
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Table 6: Multivariate Conditional Heteroscedasticity and Kurtosis 

Model (i =1,2; 1 = US, 2 = UK): titiitiiiti zzyy ,1,2,1,1,0,, +++= −− γγγ , 1,,110, −− += tz ααα ,  

1,2,121,21,110,2,1 −−− ++= tttt hzzh δδδ , ttt xz Λ= , 
ti

tx ti ,
~, ν  1,,2,2

1,

4

1,
1,0,,, −

−

− ++= tiii

ti

ti
iitii k

h

z
k βββ  

Panel A: US and UK Equity Series: LLF = -3206.93 
 γ0 γ1 γ2 α0 α1 α2 β0 β1 β2 

S&P500 
Equation 

0.062 
(0.013)** 

- 0.006 
(0.014) 

0.031 
(0.003)** 

0.090 
(0.003)** 

0.823 
(0.005**) 

5.248 
(0.884)** 

0.053 
(0.642) 

0.144 
(0.117) 

FTSE 100 
Equation 

0.033 
(0.015)* 

0.086 
(0.018)** 

- 0.062 
(0.005)** 

0.080 
(0.0037) 

0.800 
(0.005)** 

2.333 
(0.114)** 

0.506 
(0.063)** 

0.318 
(0.233) 

 δ0 δ1 δ2       
Covariance 
Equation 

0.022 
(0.003)** 

0.046 
(0.004)** 

0.695 
(0.037)** 

      

Panel B: US and UK Bond Series: LLF = -578.97 
 γ0 γ1 α0 α1 α2 β0 β1 β2 

US Bonds 
Equation 

0.006 
(0.009) 

0.024 
(0.017) 

0.043 
(0.001)** 

0.059 
(0.005)** 

0.790 
(0.004)** 

3.247 
(0.065)** 

0.269 
(0.464) 

0.321 
(0.062)** 

UK Bonds 
Equation 

0.0186 
(0.007)* 

0.047 
(0.017)** 

0.005 
(0.001)** 

0.050 
(0.002)** 

0.933 
(0.002)** 

4.837 
(0.215) 

0.013 
(0.216) 

0.315 
(0.089)** 

 δ0 δ1 δ2      
Covariance 
Equation 

0.010 
(0.001)** 

0.051 
(0.002)** 

0.820 
(0.005)** 

     

Notes: Standard errors are shown in parentheses. * and ** denote significance at the 5% and 1% levels respectively. LLF denotes the maximal value of the log-likelihood 
function. The χ2(2) critical values are 5.99 and 9.21 at the 5% and 1% levels respectively. 
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Figure 1: Fitted Conditional Heteroscedasticity and Conditional Kurtosis over 
Time for UK Stock Returns 

 

 

 

Figure 2: Estimated Degrees of Freedom over Time for UK Stock Returns 
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Figure 3: Plot of Transformation Series, λλt for UK Stock Returns 

 

 

Figure 4: Fitted Conditional Heteroscedasticity and Conditional Kurtosis over 
Time for US T-Bonds 

 

 

 

 

0

1

2

3

4

5

6

7

Ja
n-

90

Ju
n-

90

N
ov

-9
0

A
pr

-9
1

S
ep

-9
1

M
ar

-9
2

A
ug

-9
2

Ja
n-

93

Ju
n-

93

N
ov

-9
3

M
ay

-9
4

O
ct

-9
4

M
ar

-9
5

A
ug

-9
5

Ja
n-

96

Ju
l-9

6

D
ec

-9
6

M
ay

-9
7

O
ct

-9
7

M
ar

-9
8

A
ug

-9
8

F
eb

-9
9

Ju
l-9

9

D
ec

-9
9

M
ay

-0
0

Date

C
o

n
d

it
io

n
al

 h
et

er
o

sc
ed

as
ti

ci
ty

0

50

100

150

200

250

300

350

400

450

500

C
o

n
d

it
io

n
al

 k
u

rt
o

si
s

h(t)

k(t)

0

0.5

1

1.5

2

2.5

Ja
n-

90

A
pr

-9
0

A
ug

-9
0

D
ec

-9
0

A
pr

-9
1

A
ug

-9
1

D
ec

-9
1

A
pr

-9
2

A
ug

-9
2

D
ec

-9
2

A
pr

-9
3

A
ug

-9
3

N
ov

-9
3

M
ar

-9
4

Ju
l-9

4

N
ov

-9
4

M
ar

-9
5

Ju
l-9

5

N
ov

-9
5

M
ar

-9
6

Ju
l-9

6

N
ov

-9
6

M
ar

-9
7

Ju
n-

97

O
ct

-9
7

F
eb

-9
8

Ju
n-

98

O
ct

-9
8

F
eb

-9
9

Ju
n-

99

O
ct

-9
9

F
eb

-0
0

Ju
n-

00



 43

Figure 5: Estimated Degrees of Freedom over Time for US T-bonds 

 

Figure 6: Plot of Transformation Series, λλt for US T-Bonds 
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Figure 7: Conditional Covariance between US and UK Bond Returns 

 

 

Figure 8: Conditional Co-fourth Moment and Conditional Variances for US and 
UK Stock Returns 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

01
/0

1/
90

01
/0

7/
90

01
/0

1/
91

01
/0

7/
91

01
/0

1/
92

01
/0

7/
92

01
/0

1/
93

01
/0

7/
93

01
/0

1/
94

01
/0

7/
94

01
/0

1/
95

01
/0

7/
95

01
/0

1/
96

01
/0

7/
96

01
/0

1/
97

01
/0

7/
97

01
/0

1/
98

01
/0

7/
98

01
/0

1/
99

01
/0

7/
99

01
/0

1/
00

Date

C
o

n
d

it
io

n
al

 C
o

va
ri

an
ce

0

0.5

1

1.5

2

2.5

3

Ja
n-

90

Ju
l-9

0

Ja
n-

91

Ju
l-9

1

Ja
n-

92

Ju
l-9

2

Ja
n-

93

Ju
l-9

3

Ja
n-

94

Ju
l-9

4

Ja
n-

95

Ju
l-9

5

Ja
n-

96

Ju
l-9

6

Ja
n-

97

A
ug

-9
7

F
eb

-9
8

A
ug

-9
8

F
eb

-9
9

A
ug

-9
9

F
eb

-0
0

Date

C
o

n
d

it
io

n
al

 V
ar

ia
n

ce
s

0

50

100

150

200

250

C
o

n
d

it
io

n
al

 C
o

-f
o

u
rt

h
 m

o
m

en
t

UK Variance

US Variance

Co-fourth moment



 45

Figure 9: Conditional Co-fourth Moment and Conditional Variances for US and 
UK Stock Returns (co-fourth moment values above 10 removed) 

 

Figure 10: Conditional Co-fourth Moment against Conditional Covariance for 
US and UK Stock Returns (co-fourth moment values above 10 removed) 
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