[RsR] Welcome to the "R-SIG-Robust" mailing list (Digest mode)

Teresa Pérez-Piñar López tperezp| @end|ng |rom u@x@e@
Tue Oct 14 14:01:21 CEST 2025


Dear R community,
We analyzed a series of biological samples and obtained results for 60 primary metabolites. For some metabolites, the results are in absolute concentration units, and for others, in relative units, because they were measured using different machines.

The goal is to build a predictive model that selects a small number of metabolites, which can then be measured on one machine to predict a rate associated with each sample. Each sample has a different regeneration rate.

In total, 13 samples were analyzed, each with biological and technical replicates.

First, I performed a forward stepwise regression. Then, I was advised to perform a Leave-One-Out Cross-Validation (LOOCV). I have done this in R, but I am not sure if it is correct, because the resulting predictive model contains only one metabolite.

I would like guidance from the R community on whether my approach and LOOCV implementation are appropriate given this small dataset and the type of data I have. I can provide the R documents and scripts I used so that members can review them and advise whether the analysis is correct.

Any suggestions or recommendations would be greatly appreciated.

Thank you very much for your time and help.

Best regards,
Teresa

________________________________
De: R-SIG-Robust <r-sig-robust-bounces using r-project.org> en nombre de r-sig-robust-request using r-project.org <r-sig-robust-request using r-project.org>
Enviado: martes, 14 de octubre de 2025 13:16
Para: Teresa Pérez-Piñar López <tperezpi using uax.es>
Asunto: Welcome to the "R-SIG-Robust" mailing list (Digest mode)

PRECAUCIÓN: Este correo electrónico se originó fuera de la organización. No abra enlaces ni archivos adjuntos a menos que pueda confirmar que el remitente es conocido y que el contenido es seguro


Welcome to the R-SIG-Robust using r-project.org mailing list!

To post to this list, send your message to:

  r-sig-robust using r-project.org

General information about the mailing list is at:

  https://stat.ethz.ch/mailman/listinfo/r-sig-robust

If you ever want to unsubscribe or change your options (eg, switch to
or from digest mode, change your password, etc.), visit your
subscription page at:

  https://stat.ethz.ch/mailman/options/r-sig-robust/tperezpi%40uax.es

You can also make such adjustments via email by sending a message to:

  R-SIG-Robust-request using r-project.org

with the word `help' in the subject or body (don't include the
quotes), and you will get back a message with instructions.

You must know your password to change your options (including changing
the password, itself) or to unsubscribe without confirmation.  It is:

  110902

Normally, Mailman will remind you of your r-project.org mailing list
passwords once every month, although you can disable this if you
prefer.  This reminder will also include instructions on how to
unsubscribe or change your account options.  There is also a button on
your options page that will email your current password to you.

CLÁUSULA DE CONFIDENCIALIDAD

Este mensaje ha sido generado desde una cuenta de la Universidad Alfonso X el Sabio para los fines propios de la institución. Su contenido se considera confidencial y, salvo que la naturaleza del mismo así lo exija, no está permitida su reproducción o distribución sin la autorización expresa. Si Usted ha recibido indebidamente este correo le rogamos que advierta de ello al remitente y proceda a su eliminación. Política de privacidad www.uax.com/politica-de-privacidad

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://stat.ethz.ch/pipermail/r-sig-robust/attachments/20251014/f3468ec0/attachment.html>

-------------- next part --------------
A non-text attachment was scrubbed...
Name: Regression model development_raw data_bueno.pdf
Type: application/pdf
Size: 77506 bytes
Desc: Regression model development_raw data_bueno.pdf
URL: <https://stat.ethz.ch/pipermail/r-sig-robust/attachments/20251014/f3468ec0/attachment.pdf>


More information about the R-SIG-Robust mailing list