[R-sig-ME] ICC for mixed models with modeled residuals
Thierry Onkelinx
th|erry@onke||nx @end|ng |rom |nbo@be
Tue Jan 24 10:09:49 CET 2023
Dear Simon,
I'd rephrase the question to "Is ICC defined for these models?". The answer
is probably no.
Best regards,
ir. Thierry Onkelinx
Statisticus / Statistician
Vlaamse Overheid / Government of Flanders
INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE AND
FOREST
Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
thierry.onkelinx using inbo.be
Havenlaan 88 bus 73, 1000 Brussel
www.inbo.be
///////////////////////////////////////////////////////////////////////////////////////////
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
///////////////////////////////////////////////////////////////////////////////////////////
<https://www.inbo.be>
Op ma 23 jan. 2023 om 01:46 schreef Simon Harmel <sim.harmel using gmail.com>:
> Hello All,
>
> I was wondering if for models like below, there is a standard way to
> calculate the ICC given the extra modeling of residuals?
>
> Any possible `R` package capable of calculating ICC for such models?
>
> Thank you,
> Simon
>
> lme(yij ~ X1 + X2 ...,
> random = ~1| subject,
> data = data,
> subset = DV == "DV1",
> correlation = corSymm(~1|subject),
> weights = varComb(varIdent(form = ~ 1 | X1),
> varPower(form = ~ X2)))
>
>
> glmmTMB(yij ~ X1 + X2 + ... + (1|subject),
> family = beta_family(), data = subset(data, DV =="DV2"),
> dispformula = ~X1 + X2)
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list