[R-sig-ME] How to fix a gamma model with poor fit?
Cátia Ferreira De Oliveira
cm|o500 @end|ng |rom york@@c@uk
Wed Jul 14 01:18:05 CEST 2021
Dear all,
I am sorry for reposting here after posting on cross validated here
<https://stats.stackexchange.com/questions/534098/glmer-gamma-model-good-fit>
but I am still not sure what would be the best way of going about fixing
this model. It seems to have poor fit if you look at the plots as they have
extremes on both sides, which would not fit well with a gamma distribution.
Despite this, the results are consistent across packages (lme4, nlme...).
I have 209062 rows of data and this is response time data.
I want to determine whether there are differences between groups (Groups -
2 levels) on the learning of a task (Probability - 2 levels) across time
(within sessions - Block - 4 levels / across sessions - Session - 2
levels). It doesn't have zero response times, but some close to zero.
Do you have any suggestions for how one can improve a model like this or
whether I should just use another distribution that fits the data a bit
better?
Thank you!
Catia
Model:
glmer(RT ~ Prob * Bl * Session * Gr + (1 | Participant), data=
Data.trimmed, family = Gamma(link =
"log"), control=glmerControl(optimizer="bobyqa"))
Model summary:
Generalized linear mixed model fit by maximum likelihood (Adaptive
Gauss-Hermite Quadrature, nAGQ = 0) ['glmerMod']
Family: Gamma ( log )
Formula: RT ~ Probability * Block * Session * Group + (1 | Participant)
Data: Data.trimmed
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun =
1e+06))
AIC BIC logLik deviance df.resid
2456107 2456538 -1228012 2456023 209020
Scaled residuals:
Min 1Q Median 3Q Max
-4.297 -0.625 -0.158 0.440 35.691
Random effects:
Groups Name Variance Std.Dev.
Participant (Intercept) 0.002203 0.04694
Residual 0.053481 0.23126
Number of obs: 209062, groups: Participant, 130
Fixed effects:
Estimate Std. Error t value
Pr(>|z|)
(Intercept) 6.024e+00 4.182e-03 1440.439 <
2e-16 ***
Probability1 -2.835e-02 7.041e-04 -40.265 <
2e-16 ***
Block2-1 -2.925e-02 2.077e-03 -14.084 <
2e-16 ***
Block3-2 -3.676e-03 2.131e-03 -1.725
0.084500 .
Block4-3 4.085e-03 2.307e-03 1.771
0.076577 .
Block5-4 -1.220e-02 2.380e-03 -5.125
2.98e-07 ***
Session1 4.795e-02 7.323e-04 65.478 <
2e-16 ***
Group1 -4.616e-02 4.182e-03 -11.037 <
2e-16 ***
Probability1:Block2-1 -7.228e-03 2.077e-03 -3.480
0.000501 ***
Probability1:Block3-2 -5.332e-03 2.131e-03 -2.503
0.012331 *
Probability1:Block4-3 -2.076e-02 2.307e-03 -8.999 <
2e-16 ***
Probability1:Block5-4 6.044e-03 2.380e-03 2.539
0.011104 *
Probability1:Session1 1.656e-03 7.046e-04 2.351
0.018743 *
Block2-1:Session1 -1.972e-02 2.077e-03 -9.494 <
2e-16 ***
Block3-2:Session1 -8.521e-03 2.131e-03 -3.999
6.35e-05 ***
Block4-3:Session1 4.380e-05 2.308e-03 0.019
0.984856
Block5-4:Session1 -3.768e-03 2.380e-03 -1.583
0.113389
Probability1:Group1 1.515e-03 7.041e-04 2.151
0.031478 *
Block2-1:Group1 -6.161e-03 2.077e-03 -2.966
0.003015 **
Block3-2:Group1 -1.129e-02 2.131e-03 -5.301
1.15e-07 ***
Block4-3:Group1 7.095e-03 2.307e-03 3.076
0.002101 **
Block5-4:Group1 -4.055e-03 2.380e-03 -1.704
0.088414 .
Session1:Group1 3.782e-03 7.323e-04 5.164
2.41e-07 ***
Probability1:Block2-1:Session1 5.729e-05 2.077e-03 0.028
0.977997
Probability1:Block3-2:Session1 3.543e-03 2.131e-03 1.663
0.096363 .
Probability1:Block4-3:Session1 -6.877e-03 2.308e-03 -2.980
0.002886 **
Probability1:Block5-4:Session1 4.329e-03 2.380e-03 1.819
0.068952 .
Probability1:Block2-1:Group1 -1.238e-03 2.077e-03 -0.596
0.550980
Probability1:Block3-2:Group1 1.022e-02 2.131e-03 4.795
1.63e-06 ***
Probability1:Block4-3:Group1 -6.532e-03 2.307e-03 -2.831
0.004634 **
Probability1:Block5-4:Group1 2.351e-03 2.380e-03 0.988
0.323373
Probability1:Session1:Group1 -1.805e-03 7.046e-04 -2.562
0.010412 *
Block2-1:Session1:Group1 -2.060e-04 2.077e-03 -0.099
0.920984
Block3-2:Session1:Group1 -4.211e-03 2.131e-03 -1.977
0.048094 *
Block4-3:Session1:Group1 3.339e-03 2.308e-03 1.447
0.147888
Block5-4:Session1:Group1 -3.956e-03 2.380e-03 -1.662
0.096539 .
Probability1:Block2-1:Session1:Group1 -1.270e-03 2.077e-03 -0.611
0.540933
Probability1:Block3-2:Session1:Group1 1.678e-03 2.131e-03 0.788
0.430929
Probability1:Block4-3:Session1:Group1 -4.640e-03 2.308e-03 -2.010
0.044392 *
Probability1:Block5-4:Session1:Group1 4.714e-03 2.380e-03 1.980
0.047649 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation matrix not shown by default, as p = 40 > 12.
Use print(x, correlation=TRUE) or
vcov(x) if you need it
Plots:
[1]: https://i.stack.imgur.com/XPdtl.png
[2]: https://i.stack.imgur.com/zUNRX.png
[3]: https://i.stack.imgur.com/6slYG.png
[4]: https://i.stack.imgur.com/LlRwT.png
[5]: https://i.stack.imgur.com/TNYCP.png
[6]: https://i.stack.imgur.com/45l0P.png
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list