[R-sig-ME] compare result of ZINB model between glmmtmb and zeroinfl function
Ben Bolker
bbo|ker @end|ng |rom gm@||@com
Fri May 7 01:33:24 CEST 2021
Very hard to know what's going on without a reproducible example.
Can you provide a link to some data?
Does the glmmTMB model perform equivalently to the zeroinfl model if
you leave out the random effect term (so that the models should be
*exactly* equivalent?
On 5/5/21 8:09 AM, ornicha anuchitchanchai wrote:
> Hi,
>
>
> I want to run spatial zero-inflated negative binomial regression model. So, I planned to run spatial correlation from glmtmb package but I found problems:
>
> When running model with function zeroinfl, the model works fine
>
>
> Here is my model with zeroinfl function:
>
> zinbz <- zeroinfl(driver~zone+pop+market+depstore+religious+med+edu+res+conv+busstop+busline+rail+pier+transit+dist_sta+RL_motorway+RL_trunk+
RL_primary+RL_secondary+RL_tertiary+RL_residential+RL_track+RL_footway+RL_livingstreet|pop+market+religious+med+edu+res+
conv+busstop+busline+RL_motorway+RL_trunk+RL_primary+RL_secondary+RL_tertiary+RL_residential+RL_track+RL_footway+RL_livingstreet,
data=wingrid, dist="negbin")
>
>
> but when running with glmmTMB, I got warning:
>
> Warning messages:
> 1: In fitTMB(TMBStruc) :
> Model convergence problem; non-positive-definite Hessian matrix. See vignette('troubleshooting')
> 2: In fitTMB(TMBStruc) :
> Model convergence problem; function evaluation limit reached without convergence (9). See vignette('troubleshooting')
>
> here is my code:
>
> zinb_glmm <- glmmTMB(driver~zone+pop+market+depstore+religious+med+edu+res+conv+busstop+busline+rail+pier+transit+dist_sta+RL_motorway+RL_trunk+RL_primary+RL_secondary+RL_tertiary+RL_residential+RL_track+RL_footway+RL_livingstreet+(1|null), zi=~pop+market+religious+med+edu+res+conv+busstop+busline+RL_motorway+RL_trunk+RL_primary+RL_secondary+RL_tertiary+RL_residential+RL_track+RL_footway+RL_livingstreet, data=wingrid, family=nbinom2)
>
>
> (wingrid is my data,
> null is column with value of 1 for all rows)
>
> And I got this result:
>
> AIC BIC logLik deviance df.resid
> NA NA NA NA 1535
>
> Random effects:
>
> Conditional model:
> Groups Name Variance Std.Dev.
> null (Intercept) 1.01 1.005
> Number of obs: 1582, groups: null, 1
>
> Overdispersion parameter for nbinom2 family (): 1.02
>
> Conditional model:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 1.803e-03 NA NA NA
> zonemiddle -1.047e-02 1.062e-01 -0.099 0.921486
> zoneouter 1.286e-02 1.254e-01 0.103 0.918278
> pop 6.892e-05 NA NA NA
> market 1.625e-02 7.505e-02 0.217 0.828535
> depstore 2.863e-02 6.749e-02 0.424 0.671412
> religious -4.474e-03 3.638e-02 -0.123 0.902110
> med 1.074e-02 2.731e-02 0.393 0.694192
> edu 4.624e-03 2.955e-02 0.156 0.875670
> res 3.904e-02 1.988e-02 1.964 0.049515 *
> conv 4.895e-02 1.474e-02 3.320 0.000901 ***
> busstop 5.870e-02 8.705e-03 6.744 1.54e-11 ***
> busline 1.312e-02 1.480e-02 0.886 0.375492
> rail -2.076e-03 2.156e-01 -0.010 0.992317
> pier -8.357e-04 6.122e-02 -0.014 0.989108
> transit 9.169e-03 1.333e-01 0.069 0.945176
> dist_sta -3.943e-02 6.868e-03 -5.741 9.42e-09 ***
> RL_motorway 6.116e-07 1.991e-05 0.031 0.975492
> RL_trunk 7.563e-05 2.669e-05 2.834 0.004603 **
> RL_primary 3.558e-05 2.221e-05 1.602 0.109159
> RL_secondary 9.770e-05 3.489e-05 2.800 0.005103 **
> RL_tertiary 2.199e-05 2.884e-05 0.762 0.445778
> RL_residential 5.639e-05 1.319e-05 4.276 1.90e-05 ***
> RL_track -1.745e-04 1.092e-04 -1.599 0.109862
> RL_footway 5.313e-05 2.070e-05 2.567 0.010259 *
> RL_livingstreet 1.314e-06 3.377e-05 0.039 0.968950
> ---
> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
>
> Zero-inflation model:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 6.020e-02 6.701e-02 0.898 0.368988
> pop 1.177e-05 1.019e-04 0.116 0.907995
> market -4.133e-03 3.436e-01 -0.012 0.990401
> religious -1.511e-02 1.222e-01 -0.124 0.901611
> med -3.991e-02 9.085e-02 -0.439 0.660462
> edu -3.506e-02 9.395e-02 -0.373 0.709055
> res -5.044e-02 5.976e-02 -0.844 0.398597
> conv -3.881e-02 6.847e-02 -0.567 0.570848
> busstop -1.306e-01 3.946e-02 -3.310 0.000933 ***
> busline -1.364e-02 5.989e-02 -0.228 0.819842
> RL_motorway -4.707e-05 9.994e-05 -0.471 0.637641
> RL_trunk 7.902e-05 1.280e-04 0.617 0.536956
> RL_primary -2.021e-04 7.746e-05 -2.609 0.009093 **
> RL_secondary -5.684e-04 1.251e-04 -4.543 5.54e-06 ***
> RL_tertiary 3.062e-05 1.093e-04 0.280 0.779452
> RL_residential -3.759e-05 7.273e-06 -5.168 2.37e-07 ***
> RL_track 8.114e-04 1.565e-04 5.186 2.15e-07 ***
> RL_footway -2.662e-04 1.280e-04 -2.079 0.037595 *
> RL_livingstreet 6.237e-05 1.205e-04 0.518 0.604594
> ---
> Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
> Warning message:
> In sqrt(diag(vcov)) : NaNs produced
>
>
> There is NA result. Also, the result is totally different from result from function zeroinf.
>
>
> Regards,
>
> nichalala
>
>
>
> [[alternative HTML version deleted]]
>
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list