[R-sig-ME] Comparison between the ouputs of the lmer and the brm (from the brms package) functions
Phillip Alday
me @end|ng |rom ph||||p@|d@y@com
Fri Apr 16 12:50:11 CEST 2021
Note that brms does some special reparameterization magic with the
intercept and uses a weakly informative prior for both the
reparameterized intercept and the random effects.
Also, if you look, you'll see that youR ESS is much lower for the
intercept and the RE than for the other parameters. This can be
indicative of the model having trouble exploring how those parameters
relate and thus still having a large amount of uncertainty.
In other words, the uncertainty in the random-effect of Intercept
results in increased uncertainty for the fixed-effect of Intercept.
Phillip
On 16/4/21 11:54 am, Vincent Bremhorst wrote:
> Dear all,
>
> I fitted the same mixed model using two different functions : lmer and brm.
>
> The estimation of the standard deviation of the random effect and the estimation of the standard errors of the intercept differ. Both estimates are higher with the Bayesian procedure.
> Since I use non-informative prior in the brm specification, I would expect similar results.
> The other estimates are similar for both procedures.
>
> Do you have any idea what's happen here?
> Thanks for your help,
> Vincent Bremhorst.
>
> lmer (model assumptions are met):
>
> res <- lmer(dTmeanoff ~ habitat + (1|week), data=trh)
>
>
> Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
>
> Formula: dTmeanoff ~ habitat + (1 | week)
>
> Data: trh
>
>
>
> REML criterion at convergence: 312.5
>
>
>
> Scaled residuals:
>
> Min 1Q Median 3Q Max
>
> -3.5949 -0.5149 -0.0181 0.4792 2.2995
>
>
>
> Random effects:
>
> Groups Name Variance Std.Dev.
>
> week (Intercept) 0.06142 0.2478
>
> Residual 1.93221 1.3900
>
> Number of obs: 89, groups: week, 4
>
>
>
> Fixed effects:
>
> Estimate Std. Error df t value Pr(>|t|)
>
> (Intercept) 0.6200 0.2788 12.5997 2.224 0.0451 *
>
> habitatu -0.8101 0.3503 83.0542 -2.312 0.0232 *
>
> habitatw -1.6366 0.3698 83.2151 -4.425 2.9e-05 ***
>
> ---
>
> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
>
>
> Correlation of Fixed Effects:
>
> (Intr) habitt
>
> habitatu -0.638
>
> habitatw -0.605 0.481
>
> brm (convergence of the posterior chains ok)
>
>
>> priors<- c(prior(normal(0,100), class="b"),
>
> + prior(normal(0, 100), class="Intercept"),
>
> + prior(exponential(0.1), class="sigma"),
>
> + prior(exponential(0.1), class="sd", group= "week")
>
> +
>
> + )
>
>
>
>> fit1<- brm(dTmeanoff~habitat+(1|week), data=trh,
>
> + prior=priors,
>
> + iter=4000, warmup=2000,chains=2,
>
> + family = gaussian(),#no logit function applied
>
> + file = "output.rds",
>
> + sample_prior = "yes",
>
> + control = list(adapt_delta = .9))
>
>
>
> Family: gaussian
>
> Links: mu = identity; sigma = identity
>
> Formula: dTmeanoff ~ habitat + (1 | week)
>
> Data: trh (Number of observations: 89)
>
> Samples: 2 chains, each with iter = 4000; warmup = 2000; thin = 1;
>
> total post-warmup samples = 4000
>
>
>
> Group-Level Effects:
>
> ~week (Number of levels: 4)
>
> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
>
> sd(Intercept) 0.50 0.48 0.02 1.82 1.00 900 1048
>
>
>
> Population-Level Effects:
>
> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
>
> Intercept 0.63 0.36 -0.11 1.40 1.00 1159 901
>
> habitatu -0.82 0.35 -1.51 -0.13 1.00 2235 2581
>
> habitatw -1.65 0.37 -2.37 -0.89 1.00 2091 2500
>
>
>
> Family Specific Parameters:
>
> Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
>
> sigma 1.41 0.11 1.21 1.65 1.00 2863 2199
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list