[R-sig-ME] glmer() Gamma distribution - constant coefficient of variation
Hedyeh Ahmadi
hedyeh@h @end|ng |rom u@c@edu
Mon Mar 22 22:24:04 CET 2021
Hi all,
I am running a glmer() with Gamma distribution and identity link. The R output is as follows. I would like to check the constant coefficient of variation assumption in R but I am not sure where to start. Any help would be appreciated.
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: Gamma ( identity )
Formula: Y ~ 1 + pm252016aa + race +prnt.empl + overall.income + (1 | site)
Data: Family
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))
AIC BIC logLik deviance df.resid
68781.7 68917.1 -34371.8 68743.7 9180
Scaled residuals:
Min 1Q Median 3Q Max
-1.9286 -0.7314 -0.0598 0.6770 3.9599
Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.66157 0.8134
Residual 0.04502 0.2122
Number of obs: 9199, groups: site, 21
Fixed effects:
Estimate Std. Error t value Pr(>|z|)
(Intercept) 52.3578 1.3102 39.962 < 0.0000000000000002 ***
pm252016aa -0.1260 0.1099 -1.147 0.251212
race_1 1.0913 0.7106 -1.536 0.124628
race_2 -1.1787 0.6870 3.171 0.001518 **
prnt.empl 2.8852 0.4377 4.307 0.000016517 **
overall.income[>=100K] -1.8476 0.3693 -5.003 0.000000566 ***
overall.income[>=50K & <100K] -0.8644 0.3403 -2.540 0.011078 *
---
Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
Best,
Hedyeh Ahmadi, Ph.D.
Statistician
Keck School of Medicine
Department of Preventive Medicine
University of Southern California
Postdoctoral Scholar
Institute for Interdisciplinary Salivary Bioscience Research (IISBR)
University of California, Irvine
LinkedIn
www.linkedin.com/in/hedyeh-ahmadi<http://www.linkedin.com/in/hedyeh-ahmadi>
<http://www.linkedin.com/in/hedyeh-ahmadi><http://www.linkedin.com/in/hedyeh-ahmadi>
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list