[R-sig-ME] vcov function in glmer or glmmTMB package
Ben Bolker
bbo|ker @end|ng |rom gm@||@com
Fri Feb 19 02:48:37 CET 2021
Short answer.
I wouldn't expect GEE and GLMM approaches to give the same answers at
all, they're solving different problems. Agresti's book on categorical
data analysis has one entire chapter on each approach (Chapters 11 and 12).
http://www.math.mcmaster.ca/bolker/misc/agresti_cond_marg.png
Another reference (for ecologists):
Muff Stefanie, Held Leonhard, Keller Lukas F., and Matthiopoulos Jason.
“Marginal or Conditional Regression Models for Correlated Non‐normal
Data?” Methods in Ecology and Evolution 7, no. 12 (August 30, 2016):
1514–24. https://doi.org/10.1111/2041-210X.12623.
Others may be able to suggest better references.
As for the technical question:
* the details of the derivation of var-cov for lmer are in J Stat
Software Bates et al. 2015
* glmmTMB uses general-purpose optimization + Laplace approximation
(which is exact in the LMM case)
On 2/18/21 7:46 AM, wilson 1998 wrote:
> Hi There,
>
> I have some questions on this package. Basically, I would like to know how the package generate the vcov or variance covariance matrix of the betas while considering the random effects.
> In my simulation, for example I am using count data �Salamanders� which is incorporated in glmmTMB package, and for example I choose the poisson model. In the first case, I thought using the idea from generalized estimating equations to get the variance of beta would give the same answer, but it proves me that the idea has not been successfully replicating the vcov output produced by glmmTMB. Would you be able to explain how the package give the output for vcov output?
>
> So here is my attempt:
> fit0 = glmmTMB(count~spp + (1|site), family=poisson)
> fit1 = glmer(count~spp + (1|site), family=poisson)
>
>
> vcov(fit0)
> vcov(fit1)
>
>
> then the output is:
>> vcov(fit0)
> Conditional model:
> (Intercept) sppPR sppDM sppEC-A sppEC-L sppDES-L sppDF
> (Intercept) 0.100414787 -0.009259333 -0.009259333 -0.009259333 -0.009259334 -0.009259334 -0.009259333
> sppPR -0.009259333 0.046295871 0.009259332 0.009259332 0.009259333 0.009259333 0.009259332
> sppDM -0.009259333 0.009259332 0.016612285 0.009259333 0.009259333 0.009259333 0.009259333
> sppEC-A -0.009259333 0.009259332 0.009259333 0.029259437 0.009259333 0.009259333 0.009259333
> sppEC-L -0.009259334 0.009259333 0.009259333 0.009259333 0.014234439 0.009259333 0.009259333
> sppDES-L -0.009259334 0.009259333 0.009259333 0.009259333 0.009259333 0.013954163 0.009259333
> sppDF -0.009259333 0.009259332 0.009259333 0.009259333 0.009259333 0.009259333 0.017806382
>
>> vcov(fit1)
> 7 x 7 Matrix of class "dpoMatrix"
> (Intercept) sppPR sppDM sppEC-A sppEC-L sppDES-L sppDF
> (Intercept) 0.099481765 -0.009148415 -0.009148235 -0.009148238 -0.009148235 -0.009148193 -0.009148190
> sppPR -0.009148415 0.045738988 0.009147988 0.009147896 0.009147974 0.009147959 0.009147990
> sppDM -0.009148235 0.009147988 0.016412580 0.009147989 0.009148018 0.009148012 0.009148022
> sppEC-A -0.009148238 0.009147896 0.009147989 0.028907530 0.009147995 0.009147994 0.009147998
> sppEC-L -0.009148235 0.009147974 0.009148018 0.009147995 0.014063315 0.009148014 0.009148020
> sppDES-L -0.009148193 0.009147959 0.009148012 0.009147994 0.009148014 0.013786369 0.009148015
> sppDF -0.009148190 0.009147990 0.009148022 0.009147998 0.009148020 0.009148015 0.017592178
>
>
> I tried to reproduce using the idea of Generalized estimating equations for the vcov and found very similar entries, except for the entry (1,1)
>
> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
> [1,] 0.009265 -0.00926500 -0.00926500 -0.00926500 -0.00926500 -0.00926500 -0.00926500
> [2,] -0.009265 0.04632422 0.00926500 0.00926500 0.00926500 0.00926500 0.00926500
> [3,] -0.009265 0.00926500 0.01662246 0.00926500 0.00926500 0.00926500 0.00926500
> [4,] -0.009265 0.00926500 0.00926500 0.02927735 0.00926500 0.00926500 0.00926500
> [5,] -0.009265 0.00926500 0.00926500 0.00926500 0.01424315 0.00926500 0.00926500
> [6,] -0.009265 0.00926500 0.00926500 0.00926500 0.00926500 0.01396271 0.00926500
> [7,] -0.009265 0.00926500 0.00926500 0.00926500 0.00926500 0.00926500 0.01781728
>
>
> So I would like to know how do glmmTMB / glmer produce the output for vcov please?
>
> Thankyou.
>
> Regards,
> WIlson
>
> [[alternative HTML version deleted]]
>
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list