[R-sig-ME] Covariance values for Random Effects in MCMCGlmm?
Srivats Chari
@r|v@t@ch@r| @end|ng |rom gm@||@com
Mon Nov 9 16:44:03 CET 2020
Greetings,
I have my MCMCglmm output and I was successful in extracting the random
effect using the broom.mixed package.
```
library(broom.mixed)
sample1<- tidy(mcmc_6h_v1_1run[[1]], effects = "ran_vals",conf.int = TRUE)
> head(sample1)
# A tibble: 6 x 8
effect group level term estimate std.error conf.low conf.high
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
1 ran_vals ID 10 traitspeed -0.283 0.235 -1.09 0.570
2 ran_vals ID 1005 traitspeed -0.0876 0.217 -0.742 0.565
3 ran_vals ID 13 traitspeed -0.231 0.246 -1.10 0.553
4 ran_vals ID 132 traitspeed -0.418 0.274 -1.36 0.361
5 ran_vals ID 142 traitspeed -0.221 0.226 -0.977 0.560
6 ran_vals ID 144 traitspeed -0.250 0.218 -0.964 0.678
```
Further I was also able to extract the covariance of the traits
```
sample2<- tidy(mcmc_6h_v1_1run[[1]], effects = "ran_pars", conf.int = T,
conf.method = "HPDinterval")
> head(sample2)
# A tibble: 6 x 8
effect group level term estimate
std.error conf.low conf.high
<chr> <chr> <chr> <chr> <dbl>
<dbl> <dbl> <dbl>
1 ran_pars ID NA var__traitspeed 0.110
0.0256 0.0629 0.160
2 ran_pars ID NA cov__traitmean_act.traitspeed 0.0385
0.0326 -0.0219 0.104
3 ran_pars ID NA cov__traithr50.traitspeed 0.0359
0.0235 -0.0131 0.0793
4 ran_pars ID NA cov__traitani_excursion.traitspeed 0.0125
0.0255 -0.0378 0.0627
5 ran_pars ID NA cov__traithr_ratio.traitspeed -0.0161
0.0181 -0.0488 0.0200
6 ran_pars ID NA cov__traitpopen_diurnality.traitspeed -0.0769
0.0241 -0.125 -0.0331
```
Now what I am trying is to get is the covariance of traits for the random
effect. What I mean is I have 196 individuals and I am trying to get 1
value with 95% credible interval for each individual for a trait covariance
like - cov__traithr_ratio.traitspeed
Is it possible to do this with ```broom.mixed``` ? Or is there any other
way of doing this?
Any help is much appreciated. :)
Thank you in advance.!
Regards,
Srivats.
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list