[R-sig-ME] lme4: Obtaining the SE of difference in two fixed-effects slope
Thierry Onkelinx
th|erry@onke||nx @end|ng |rom |nbo@be
Thu Oct 29 18:09:25 CET 2020
Dear Simon,
You want to compute a contrast. You can do this with the glht() function
from the multcomp package.
Best regards,
ir. Thierry Onkelinx
Statisticus / Statistician
Vlaamse Overheid / Government of Flanders
INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE AND
FOREST
Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
thierry.onkelinx using inbo.be
Havenlaan 88 bus 73, 1000 Brussel
www.inbo.be
///////////////////////////////////////////////////////////////////////////////////////////
To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey
///////////////////////////////////////////////////////////////////////////////////////////
<https://www.inbo.be>
Op do 29 okt. 2020 om 03:30 schreef Simon Harmel <sim.harmel using gmail.com>:
> Dear All,
>
> I'm interested in obtaining standard error (SE) of [*meanses - ses]*
> estimate
> in my model below which serves as the contextual effect coefficient.
>
> Is there a way to obtain this SE in R?
>
> hsb <- read.csv('
> https://raw.githubusercontent.com/rnorouzian/e/master/hsb.csv')
>
> fit <- lmer(math ~ ses + meanses + (1|sch.id), data = hsb)
>
> coef(summary(fit))
>
> Estimate Std. Error t value
> (Intercept) 12.661262 0.1493726 84.762956
> ses 2.191165 0.1086673 20.163983
> meanses 3.675037 0.3776607 9.731055
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list