[R-sig-ME] Covariance structure used in lme
Sorkin, John
j@ork|n @end|ng |rom @om@um@ry|@nd@edu
Fri May 22 15:19:00 CEST 2020
I am running the following random slope, random intercept model:
# Model 3
fitRSlope1 <- lme(distance~age+Sex+age*Sex, random=~1+age|Subject,data=Orthodont)
summary(fitRSlope1)
ranef(fitRSlope1)
When I run the model, I get the following output
Random effects:
Formula: ~1 + age | Subject
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 2.4055009 (Intr)
age 0.1803455 -0.668
Residual 1.3100396
Is the general positive-definite, Log-Cholesky parametrization a description of what one might call an unstructured variance-covariance matrix with as a particular paramaterization?
Thank you,
John
John David Sorkin M.D., Ph.D.
Professor of Medicine
Chief, Biostatistics and Informatics
University of Maryland School of Medicine Division of Gerontology and Geriatric Medicine
Baltimore VA Medical Center
10 North Greene Street
GRECC (BT/18/GR)
Baltimore, MD 21201-1524
(Phone) 410-605-7119
(Fax) 410-605-7913 (Please call phone number above prior to faxing)
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list