[R-sig-ME] Multi-level Rasch Model Per Douglas Bates' paper
Ben Bolker
bbo|ker @end|ng |rom gm@||@com
Wed May 13 19:55:10 CEST 2020
I'd have to look at this more carefully, but something like that.
It's more robust and easier to understand if you use labels rather than
numbers, e.g.
coef(m1)$cond$item[["(Intercept)"]]
? (if in doubt, use str(coef(m1)) to see how the pieces are arranged
and labeled)
On 5/13/20 1:45 PM, Simon Harmel wrote:
> I meant *easiness *<- *coef(m1)[[1]][[1]][1]* *persons
> <- coef(m1)[[1]][[2]][1]*
>
> On Wed, May 13, 2020 at 12:43 PM Simon Harmel <sim.harmel using gmail.com
> <mailto:sim.harmel using gmail.com>> wrote:
>
> Ben,
>
> This is exactly what I'm trying to understand for my glmmTMB
> models in my original post ('m1' & 'm2').
>
> So to get the item easiness I think we need to use: *easiness *<-
> *coef(f11)[[1]][[1]][1]*
> * persons <- coef(f11)[[1]][[2]][1]*
> *
> *
> Am I right Ben?
>
> On Wed, May 13, 2020 at 12:32 PM Ben Bolker <bbolker using gmail.com
> <mailto:bbolker using gmail.com>> wrote:
>
> Apologies for not looking this over in great detail, but
> not sure
> why you're mixing lme4 and glmmTMB here?? Isn't item easiness
> just
> lme4::coef(fm2)$item ?
>
> easiness <-
> lme4::ranef(fm2)$item[[1]] +
> glmmTMB::fixef(fm2)[imap$itype])
>
> On 5/13/20 1:25 PM, Rasmus Liland wrote:
> > On 2020-05-13 18:50 +0200, Rasmus Liland wrote:
> >> Indeed it does work now! Thanks!
> > Right, so this code reproduces code until the
> > easiness variable on page 15. Perhaps this
> > is useful?
> >
> > data("lq2002", package="multilevel")
> > wrk <- lq2002
> > # wrk[1:5,]
> > for (i in 3:16) wrk[[i]] <- ordered(wrk[[i]])
> > for (i in 17:21) wrk[[i]] <- ordered(5 - wrk[[i]])
> > lql <- reshape(wrk,
> > varying = list(names(lq2002)[3:21]),
> > v.names = "fivelev",
> > idvar = "subj",
> > timevar = "item",
> > drop = names(lq2002)[c(2, 22:27)],
> > direction = "long")
> > lql$itype <-
> > with(lql, factor(ifelse(item < 12, "Leadership",
> > ifelse(item < 15, "Task Sig.", "Hostility")
> > )))
> > for (i in c(1, 2, 4, 5)) lql[[i]] <- factor(lql[[i]])
> > lql$dichot <- factor(ifelse(lql$fivelev < 4, 0, 1))
> > # str(lql)
> > # summary(lql)
> >
> > ## 3.2 Fitting an initial multilevel Rasch model
> > (fm1 <- lme4::glmer(
> > dichot ~ 0 + itype + (1 | subj) +
> > (1 | COMPID) +
> > (1 | item),
> > lql,
> > binomial))
> > rr <- lme4::ranef(fm1, condVar = TRUE)
> > str(rr$COMPID)
> > head(rr$COMPID)
> >
> > qq <- lattice::qqmath(rr)
> > print(qq$subj)
> >
> > ## 3.3 Allowing for interactions of company and item type
> > (fm2 <- lme4::glmer(
> > dichot ~ 0 + itype + (1 | subj) +
> > (0 + itype | COMPID) +
> > (1 | item),
> > lql,
> > binomial))
> >
> > (fm3 <- lme4::glmer(
> > dichot ~ 0 + itype + (1 | subj) +
> > (1 | COMPID:itype) +
> > (1 | item),
> > lql,
> > binomial))
> >
> > (fm3a <- lme4::glmer(
> > dichot ~ 0 + itype + (1 | subj) +
> > (1 | COMPID:itype) +
> > (1 | COMPID) +
> > (1 | item),
> > lql,
> > binomial))
> >
> > anova(fm3, fm3a, fm2)
> >
> > str(imap <- unique(lql[, c("itype", "item")]))
> >
> > (easiness <-
> > lme4::ranef(fm2)$item[[1]] +
> > glmmTMB::fixef(fm2)[imap$itype])
> >
> > Best,
> > Rasmus
> >
> > _______________________________________________
> > R-sig-mixed-models using r-project.org
> <mailto:R-sig-mixed-models using r-project.org> mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
> _______________________________________________
> R-sig-mixed-models using r-project.org
> <mailto:R-sig-mixed-models using r-project.org> mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list