[R-sig-ME] Fwd: Request for help using a generalized linear mixed model in correlated data

David Duffy D@v|d@Du||y @end|ng |rom q|mrbergho|er@edu@@u
Wed Jan 8 03:12:26 CET 2020


Hi Maria.

The nature of the GEE (ie marginal) model means that it should agree with the "naive" model ignoring clustering.

One way you can use your logistic-normal GLMM is to predict risk for individuals with comparable covariate values using 
predict(mod, type="response"), and calculate the resulting risk difference. Or take your log odds ratio and apply it to a given base rate - 
the hypothesis testing done using the logistic link is correctly allowing for the clustering.  

Recall that the different links will entail different distributions for the cluster means and correlation - ie a logistic link might be more appropriate for the biology generating your data.See also the zoo of alternatives for glmmTMB (beta, beta-binomial, negative binomial etc) that you could send another few weeks on. 

Cheers, David Duffy.


More information about the R-sig-mixed-models mailing list