[R-sig-ME] R.square in Mixed Models
Tim Richter-Heitmann
tr|chter @end|ng |rom un|-bremen@de
Fri Mar 22 18:16:43 CET 2019
Dear List,
i have used mixed models (six groups, 30 observation each) to model
ecological interactions of protists with their environments.
I liked my models very much, but a reviewer now asked me to give
R.square to show the explained variance of each model. I have now read a
bit on that topic, and realized that r2s in GLMMs have limited value.
I did not want to argue my way out this request (because reviewers
sometimes do not like this), so i generated some values with the MuMin
package:
r.squaredGLMM(finalfit.sand.1)
R2m R2c
[1,] 0.2716636 0.2824504
It is understoodd that the first value represents my fixed effects, and
the second value the sum of fixed and random effects. My task is to now
properly interpret these values. Does this mean that my random effect
(category, six levels) does only marginally contribute to the model fit,
and if so, was my choice to introduce this random effect justified?
Thank you for taking your time.
--
Dr. Tim Richter-Heitmann
University of Bremen
Microbial Ecophysiology Group (AG Friedrich)
FB02 - Biologie/Chemie
Leobener Straße (NW2 A2130)
D-28359 Bremen
Tel.: 0049(0)421 218-63062
Fax: 0049(0)421 218-63069
More information about the R-sig-mixed-models
mailing list