[R-sig-ME] Covariance matrix of random genetic effects
Kassim Baba Yussif
b@b@yu@@ifk @ending from gm@il@com
Mon Dec 10 12:50:27 CET 2018
Dear mix modelers,
I am modeling genotype-by-environment interaction with environment (E) as
the fixed effect and genotype (G) as the random effect using nlme package.
The model assumes residual heterogeneity across environments and a random
genetic main effects that changes between groups of environments (group)
that are positively correlated.
The genetic main effects that changes between groups of environments has a
covariance matrix that consists of group specific variances on the
diagonals and pairwise-specific genetic covariance between groups on the
off-diagonals.
I fitted the following models:
fm3b <- lme(yield ~ E,
random = list(G = pdDiag(~group)),
weights = varIdent(form = ~ 1 | E), data = BABS , method =
"REML" )
summary(fm3b)Linear mixed-effects model fit by REML
Data: BABS
AIC BIC logLik
3822.193 3925.297 -1892.096
Random effects:
Formula: ~group | G
Structure: Diagonal
(Intercept) group2 group3 Residual
StdDev: 0.2698093 0.5510772 1.05834 0.657899
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | E
Parameter estimates:
SS92a IS92a NS92a IS94a SS94a LN96a LN96b
1.0000000 1.0274616 0.9887740 0.9880075 1.0702162 0.5393888 0.5381522
HN96b
1.3293175
Fixed effects: yield ~ E
Value Std.Error DF t-value p-value
(Intercept) 3.234534 0.07354699 1470 43.97915 0
EIS92a 1.033065 0.07609483 1470 13.57602 0
EIS94a -0.434446 0.07501537 1470 -5.79143 0
ELN96a -2.009100 0.07523938 1470 -26.70276 0
ELN96b -2.636272 0.07522121 1470 -35.04692 0
ENS92a 3.759188 0.11125709 1470 33.78830 0
ESS92a -0.781158 0.07534063 1470 -10.36835 0
ESS94a -0.477911 0.07729423 1470 -6.18301 0
fm3c <- lme(yield ~ E,
random = list(G = pdSymm(~group)),
weights = varIdent(form = ~ 1 | E) , data = BABS, method =
"REML")
summary(fm3c)Linear mixed-effects model fit by REML
Data: BABS
AIC BIC logLik
3751.569 3870.953 -1853.785
Random effects:
Formula: ~group | G
Structure: General positive-definite
StdDev Corr
(Intercept) 0.2050822 (Intr) group2
group2 0.5137835 0.631
group3 1.0695264 0.335 0.671
Residual 0.6677121
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | E
Parameter estimates:
SS92a IS92a NS92a IS94a SS94a LN96a LN96b
1.0000000 0.9988832 0.9509165 0.9799925 1.0669147 0.5698006 0.5565435
HN96b
1.2884907
Fixed effects: yield ~ E
Value Std.Error DF t-value p-value
(Intercept) 3.234534 0.07475904 1470 43.26612 0
EIS92a 1.033065 0.07494170 1470 13.78491 0
EIS94a -0.434446 0.07441283 1470 -5.83833 0
ELN96a -2.009100 0.07379078 1470 -27.22697 0
ELN96b -2.636272 0.07357668 1470 -35.83026 0
ENS92a 3.759188 0.09272196 1470 40.54258 0
ESS92a -0.781158 0.07497316 1470 -10.41917 0
ESS94a -0.477911 0.07689743 1470 -6.21491 0
The two models gives me the residual heterogeneity across environments. But
I don't get the group specific variances and covariance. Model fm3b gives
me only group specific variances whiles fm3c gives group specific variances
and some between groups correlations.
Is there a way I can get group specific variances and the pair-wise
covariance?
https://orcid.org/0000-0002-3994-5066
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list