[R-sig-ME] zero-inflated glmmTMB with poly() - confidence band
John Wilson
jhwil@on@nb @ending from gm@il@com
Mon Nov 5 13:19:12 CET 2018
This worked like a charm, thank you for setting me straight!
On Tue, Oct 30, 2018 at 5:37 AM D. Rizopoulos <d.rizopoulos using erasmusmc.nl>
wrote:
> You can use still compute the correct design matrix when using poly() on
> newdata by working with a terms objects that has an appropriately
> defined the 'predvars' attribute. For an example, check the following:
>
> # data and new data for prediction
> DF <- data.frame(y = rnorm(10), x = rnorm(10))
> newDF <- data.frame(x = rnorm(10))
>
> # *wrong* design matrix X on new data
> X_new1 <- model.matrix(~ poly(x, 3), data = newDF)
>
> # correct design matrix on new data
> termsX <- terms(model.frame(y ~ poly(x, 3), data = DF))
> # check predvars attribute
> attr(termsX, "predvars")
> X_new2 <- model.matrix(delete.response(termsX), data = newDF)
>
> head(X_new1)
> head(X_new2)
>
> Best,
> Dimitris
>
>
>
> On 10/30/2018 12:58 AM, John Wilson wrote:
> > Hello,
> >
> > I've been using the newly documented predict() with group = NA to predict
> > population-level values, as per the thread here (
> > https://stat.ethz.ch/pipermail/r-sig-mixed-models/2018q4/027305.html). A
> > follow-up question: in the case of a zero-inflated model, how would I go
> > about to get the 95% CIs for response predictions? Obviously, I can get
> > them for the count and the zero-component, and without poly(), I would
> just
> > follow the example in Brooks et al (2017).
> >
> > However, I have a poly() predictor; how do I get the 95% CIs if I can't
> use
> > model.matrix naively when I have a poly() in the model? The models take a
> > while to converge, so I don't want to run a full bootstrapping either, if
> > at all possible.
> >
> > Thank you!
> > John
> >
> > Here's a toy dataset:
> >
> > library(ggplot2)
> > library(glmmTMB)
> >
> > set.seed(0)
> > x <- 1:20
> > z <- sample(c("a", "b"), length(x), replace = TRUE)
> > y <- round(5 * 2*x + 3 * x^2 + 0.1 * x^3 + rnbinom(length(x), 10, 0.03))
> > y[c(2, 3, 5, 11, 13, 19)] <- 0
> > group <- sample(c("i", "ii"), length(x), replace = TRUE)
> > df <- data.frame(x = x, y = y, z = z, group = group)
> >
> > ggplot(df) +
> > geom_point(aes(x = x, y = y, colour = z))
> >
> > m <- glmmTMB(y ~ poly(x, 3) * z +
> > (1 | group),
> > zi = ~ z,
> > family = nbinom1,
> > data = df)
> > # prediction on a new grid
> > newdata <- expand.grid(x = 1:20, z = unique(df$z), group = NA)
> > newdata$Pred <- predict(m, type = "response")
> > ### now how to add CIs?
> >
> > ggplot(df) +
> > geom_point(aes(x = x, y = y, colour = z)) +
> > geom_line(data = newdata, aes(x = x, y = Pred, colour = z, group = z),
> size
> > = 2) +
> > facet_wrap(~ z)
> >
> > [[alternative HTML version deleted]]
> >
> > _______________________________________________
> > R-sig-mixed-models using r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> >
>
> --
> Dimitris Rizopoulos
> Professor of Biostatistics
> Department of Biostatistics
> Erasmus University Medical Center
>
> Address: PO Box 2040, 3000 CA Rotterdam, the Netherlands
> Tel: +31/(0)10/7043478
> Fax: +31/(0)10/7043014
> Web (personal): http://www.drizopoulos.com/
> Web (work): http://www.erasmusmc.nl/biostatistiek/
> Blog: http://iprogn.blogspot.nl/
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list