[R-sig-ME] Error in phylogenetic ordinal model with MCMCglmm()
Dexter Locke
dexter@locke @ending from gm@il@com
Thu Aug 2 15:39:18 CEST 2018
Maybe Response needs to be an ordered factor, not a factor with three levels. Try something like
valid$Response <- as.factor(valid$Response, ordered=T)
See also th clmm package.
HTH, Dexter
> On Aug 2, 2018, at 9:24 AM, roee maor <roeemaor using gmail.com> wrote:
>
> Dear list,
>
> I'm using MCMCglmm to run a phylogenetic model where the response is a
> 3-level ordinal factor (i.e. level 2 is an intermediate phenotype
> between 1 and 3), and the predictors include one factorial (foraging
> habitat), one ordinal (trophic level), and several continuous
> variables.
>
> As far as I know MCMCglmm is the only package that can handle logistic
> models for phylogenetically structured multi-level discrete data, but
> please correct me if that's not the case.
>
> My problem right now is that I can't get MCMCglmm() to work with the
> 'family' argument set to "ordinal", although it does work with
> "categorical".
> Here's the code I'm using:
>
>> packageVersion("MCMCglmm")
> [1] ‘2.25’
>> R.version.string
> [1] "R version 3.4.3 (2017-11-30)"
>
> ## model specifications:
>> INphylo <- inverseA(mammaltree, nodes="ALL", scale=TRUE) ## phylogeny with 1399 tips, setting nodes="TIPS" is extremely slow
>> k <- length(levels(valid$Response))
>> I <- diag(k-1)
>> J <- matrix(rep(1, (k-1)^2), c(k-1, k-1))
>
> ## categorical model (unordered response) - runs to completion
>> m1 <- MCMCglmm(Response ~ -1 + trait + ForagingHab + Troph_Lev + Mass + Mean.Diur.Range + Max.Temp.Warmest.M + Temp.Annual.Range + Precip.Driest.Month + PET,
> + random = ~ us(trait):Binomial,
> + rcov = ~ us(trait):units,
> + prior = list(R = list(fix=1, V=(1/k) * (I + J), n = k-1),
> + G = list(G1 = list(V = diag(k-1), n = k-1))),
> + ginverse = list(Binomial=INphylo$Ainv),
> + burnin = 300000,
> + nitt = 3000000,
> + thin = 2000,
> + family = "categorical",
> + data = valid,
> + pl = TRUE)
>
> ## ordinal model and error message
>> m2 <- MCMCglmm(Response ~ -1 + trait + ForagingHab + Troph_Lev + Mass + Mean.Diur.Range + Max.Temp.Warmest.M + Temp.Annual.Range + Precip.Driest.Month + PET,
> + random = ~ us(trait):Binomial,
> + rcov = ~ us(trait):units,
> + prior = list(R = list(fix=1, V=1, n = k-1),
> + G = list(G1 = list(V = diag(k-1), n = k-1))),
> + ginverse = list(Binomial=INphylo$Ainv),
> + burnin = 300000,
> + nitt = 3000000,
> + thin = 2000,
> + family = "ordinal",
> + data = valid,
> + pl = TRUE)
> Error in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]) :
> contrasts can be applied only to factors with 2 or more levels
>
> ## the shape of the data
>> str(valid)
> 'data.frame': 1399 obs. of 16 variables:
> $ Binomial : chr "Abrocoma_bennettii" "Abrothrix_andinus"
> "Abrothrix_jelskii" "Abrothrix_longipilis" ...
> $ Response : Factor w/ 3 levels "1","2","3": 1 3 2 2 2 3 2 3 1 3 ...
> $ ForagingHab : Factor w/ 7 levels "1","3","4","5",..: 2 2 2 2
> 2 2 2 2 2 2 ...
> $ Troph_Lev : Factor w/ 3 levels "1","2","3": 1 2 2 2 2 3 2 1 1 1 ...
> $ Mass : num 250.5 24.9 34.5 38.9 24.5 ...
> $ Annual.Mean.Temp : num 12.42 7.26 9.18 9.9 8.62 ...
> $ Mean.Diur.Range : num 10.46 13.82 16.16 9.15 7.78 ...
> $ Max.Temp.Warmest.M : num 22 16.6 19.1 19.8 17.2 ...
> $ Min.Temp.Coldest.M : num 3.77 -3.98 -3.24 2.21 1.46 ...
> $ Temp.Annual.Range : num 18.3 20.6 22.4 17.6 15.7 ...
> $ Mean.Temp.Warm.Q : num 16 9.2 11.1 13.8 12.2 ...
> $ Mean.Temp.Cold.Q : num 8.87 4.49 6.39 5.98 4.87 ...
> $ Annual.Precip : num 166 645 558 903 1665 ...
> $ Precip.Driest.Month: num 1.74 5.99 6.31 31.31 104.7 ...
> $ AET : num 213 482 704 455 361 ...
> $ PET : num 1074 1242 1305 677 638 ...
>
>
> I don't understand what factors the error refers to, because there
> sufficient levels in the response even if one is absorbed in the
> intercept.
>
> The R-constraint in the prior is specified as suggested in the
> MCMCglmm tutorial (fix=1, V=1), but the error message is the same
> whether I use this specification or the categorical model
> specification (fix=1, V=(1/k)*(I + J)) .
>
> On a side note - what parameters affect the acceptance rates? The
> categorical models maintain a rate of around 0.3 so I think the mixing
> could be improved.
>
> Any input would be very much appreciated.
>
> Many thanks,
> Roi Maor
>
> _______________________________________________
> R-sig-mixed-models using r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
More information about the R-sig-mixed-models
mailing list