[R-sig-ME] Large variance and SD for random effects
cumuluss
cumuluss at gmx.de
Tue Mar 6 11:02:00 CET 2018
Dear Thierry,
sorry one more question. i would like to ask whether you could give me
some recommendation for my model. Would you skip random effects (or
slopes) even if you think they are necessary, as far as they lead to
suffering models? It is maybe a more general question.
Thank you!
Dear Thierry,
thank you for your answer!
Ok then I have to rethink the model.
Best regards
Paul
Thierry Onkelinx:
> Dear Paul,
>
> Your random effect structure looks quite complicated. Maybe too complex for
> the data. Your model is very likely suffering from (quasi) complete
> separation.
>
> Besides the large variances, you should also be alarmed by the near perfect
> correlations among some random effects.
>
> Best regards,
>
>
>
> ir. Thierry Onkelinx
> Statisticus / Statistician
>
> Vlaamse Overheid / Government of Flanders
> INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE AND
> FOREST
> Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
> thierry.onkelinx at inbo.be
> Havenlaan 88 bus 73, 1000 Brussel
> www.inbo.be
>
> ///////////////////////////////////////////////////////////////////////////////////////////
> To call in the statistician after the experiment is done may be no more
> than asking him to perform a post-mortem examination: he may be able to say
> what the experiment died of. ~ Sir Ronald Aylmer Fisher
> The plural of anecdote is not data. ~ Roger Brinner
> The combination of some data and an aching desire for an answer does not
> ensure that a reasonable answer can be extracted from a given body of data.
> ~ John Tukey
> ///////////////////////////////////////////////////////////////////////////////////////////
>
> <https://www.inbo.be>
>
> 2018-03-05 20:24 GMT+01:00 cumuluss <cumuluss at gmx.de>:
>
>> Hello,
>> the result of my GLMM with binomial error structure revealed for one of
>> the random intercepts and slopes variances and Sd's larger then 1
>>
>>> Generalized linear mixed model fit by maximum likelihood (Laplace
>> Approximation) ['glmerMod']
>>> Family: binomial ( logit )
>>> Formula: obs.yn ~ z.lengthxyz + z.obsX + Spe_tr_subspecie + (1 | commu) +
>>> (1 + z.lengthxyz + z.obsX | Siteun) + (1 + z.lengthxyz +
>>> z.obsX + Spe_tr_subspecie_a.c + Spe_tr_subspecie_b.c +
>>> Spe_tr_subspecie_c.c | behavior)
>>
>>> Random effects:
>>> Groups Name Variance Std.Dev. Corr
>>> commu (Intercept) 0.614004 0.78358
>>> Siteun (Intercept) 0.521198 0.72194
>>> z.lengthxyz 0.001016 0.03188 1.00
>>> z.obsX 0.306931 0.55401 -0.17 -0.19
>>> behavior (Intercept) 2.966139 1.72225
>>> z.lengthxyz 0.030171 0.17370 0.77
>>> z.obsX 0.412169 0.64200 0.20 -0.36
>>> Spe_tr_subspecie_a.c 1.853903 1.36158 0.58 0.62 0.11
>>> Spe_tr_subspecie_b.c 3.973439 1.99335 0.51 0.23 0.25 0.65
>>> Spe_tr_subspecie_c.c 7.401343 2.72054 0.39 0.30 0.47
>> 0.79 0.60
>>> Number of obs: 4413, groups: commu, 144; Siteun, 108; behavior, 31
>>
>> Now I wonder, whether that is a reason to worry, that the result could
>> be not valid?
>> Thanks in advance for any comments!
>> Paul
>>
>> _______________________________________________
>> R-sig-mixed-models at r-project.org mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>
More information about the R-sig-mixed-models
mailing list