[R-sig-ME] Large variance and SD for random effects
cumuluss
cumuluss at gmx.de
Mon Mar 5 20:24:00 CET 2018
Hello,
the result of my GLMM with binomial error structure revealed for one of
the random intercepts and slopes variances and Sd's larger then 1
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
> Family: binomial ( logit )
> Formula: obs.yn ~ z.lengthxyz + z.obsX + Spe_tr_subspecie + (1 | commu) +
> (1 + z.lengthxyz + z.obsX | Siteun) + (1 + z.lengthxyz +
> z.obsX + Spe_tr_subspecie_a.c + Spe_tr_subspecie_b.c +
> Spe_tr_subspecie_c.c | behavior)
> Random effects:
> Groups Name Variance Std.Dev. Corr
> commu (Intercept) 0.614004 0.78358
> Siteun (Intercept) 0.521198 0.72194
> z.lengthxyz 0.001016 0.03188 1.00
> z.obsX 0.306931 0.55401 -0.17 -0.19
> behavior (Intercept) 2.966139 1.72225
> z.lengthxyz 0.030171 0.17370 0.77
> z.obsX 0.412169 0.64200 0.20 -0.36
> Spe_tr_subspecie_a.c 1.853903 1.36158 0.58 0.62 0.11
> Spe_tr_subspecie_b.c 3.973439 1.99335 0.51 0.23 0.25 0.65
> Spe_tr_subspecie_c.c 7.401343 2.72054 0.39 0.30 0.47 0.79 0.60
> Number of obs: 4413, groups: commu, 144; Siteun, 108; behavior, 31
Now I wonder, whether that is a reason to worry, that the result could
be not valid?
Thanks in advance for any comments!
Paul
More information about the R-sig-mixed-models
mailing list