[R-sig-ME] R^2 for linear mixed effects models with glmer()

Thierry Onkelinx thierry.onkelinx at inbo.be
Tue Feb 6 10:15:29 CET 2018


Dear Alexandre,

First of all you need to get a stable model. Otherwise any number you
get from it is meaningless. Can you provide more detail on your model.
E.g. summary(mT), str(d1), ...

Best regards,

ir. Thierry Onkelinx
Statisticus / Statistician

Vlaamse Overheid / Government of Flanders
INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE
AND FOREST
Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
thierry.onkelinx at inbo.be
Havenlaan 88 bus 73, 1000 Brussel
www.inbo.be

///////////////////////////////////////////////////////////////////////////////////////////
To call in the statistician after the experiment is done may be no
more than asking him to perform a post-mortem examination: he may be
able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does
not ensure that a reasonable answer can be extracted from a given body
of data. ~ John Tukey
///////////////////////////////////////////////////////////////////////////////////////////




2018-02-05 20:15 GMT+01:00 ASANTOS via R-sig-mixed-models
<r-sig-mixed-models at r-project.org>:
> Dear Mix Models Members,
>
>         I try to extract R^2 for linear mixed effects models with
> glmer() function with poisson distribution using r.squaredGLMM() in
> MuMIn package, but doesn't work. My output always show:
>
> #Model ajusted > mT <-glmer(riqueza ~tipo_trat+(1|Ponto),data=d1, +
> family=poisson, control = glmerControl(check.conv.singular =
> "warning",optCtrl = list(maxfun=100000))) Warning messages: 1: In
> checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :Model
> failed to converge with max|grad| = 0.00894145 (tol = 0.001, component
> 1) 2: In checkConv(attr(opt, "derivs"), opt$par, ctrl =
> control$checkConv, :singular fit 3: In checkConv(attr(opt, "derivs"),
> opt$par, ctrl = control$checkConv, :Model is nearly unidentifiable: very
> large eigenvalue - Rescale variables?;Model is nearly unidentifiable:
> large eigenvalue ratio - Rescale variables? #R^2 conditional and
> marginal > r.squaredGLMM(mT) Error in glmer(formula = riqueza ~
> tipo_trat + temp_final + temp_inici + : fitting model with the
> observation-level random effect term failed. Add the term manually In
> addition: Warning message: In value[[3L]](cond) :(p <- ncol(X)) ==
> ncol(Y) is not TRUE
>
>       I change almost all parameters indicating by web posts like
> glmerControl, maxfun, etc. There are other approaches to calculate the
> conditional and marginal R^2 for my model with lme4 package?
>
> Thanks in advance,
>
> Alexandre
>
> --
> ======================================================================
> Alexandre dos Santos
> Proteção Florestal
> IFMT - Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso
> Campus Cáceres
> Caixa Postal 244
> Avenida dos Ramires, s/n
> Bairro: Distrito Industrial
> Cáceres - MT                      CEP: 78.200-000
> Fone: (+55) 65 99686-6970 (VIVO) (+55) 65 3221-2674 (FIXO)
>
>          alexandre.santos at cas.ifmt.edu.br
> Lattes:http://lattes.cnpq.br/1360403201088680
> OrcID: orcid.org/0000-0001-8232-6722
> Researchgate:www.researchgate.net/profile/Alexandre_Santos10
> LinkedIn: br.linkedin.com/in/alexandre-dos-santos-87961635
> Mendeley:www.mendeley.com/profiles/alexandre-dos-santos6/
> ======================================================================
>
>
>         [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models



More information about the R-sig-mixed-models mailing list