[R-sig-ME] subjects within groups and effects of group

P Greenwood pgreenw1 at gmu.edu
Fri Jan 26 23:37:58 CET 2018


Dear Dr. Alday

Could you elaborate a bit on your answer to my question in decomposing the effect of condition. Condition was randomly assigned to two groups of participants. I did include both levels of Condition in my analysis (the output I sent originally). One approach might be to use the Anova command to perform a likelihood ratio test to compare a model that includes condition with a model that does not include condition. (Perhaps that is what you mean by “test the difference?”)  However, I would like to know how effects of spectral power (Alpha) over Drive vary as a function of Condition. 

Thanks also for the information on sequence information. 

Thanks so much

Pam


P.M. Greenwood, Ph.D.
Associate Professor of Psychology
Editorial Board, NeuroImage
David King Hall 2052
George Mason University
MSN 3F5, 4400 University Drive
Fairfax, VA 22030-4444

Ph: 703 993-4268
fax: 703 993-1359
email: Pgreenw1 at gmu.edu
http://psychology.gmu.edu/people/pgreenw1

> On Jan 25, 2018, at 5:44 PM, Alday, Phillip <Phillip.Alday at mpi.nl> wrote:
> 
> Completely agree with Thierry here. 
> In addition to the usual considerations about the bias-variance tradeoff and partial pooling, you need to have things in one model if you really want to compare them. The Difference Between “Significant” and “Not Significant” is not Itself Statistically Significant (Gelman and Stern 2012, doi:10.1198/000313006X152649 <https://secure-web.cisco.com/1K0nLxMcHeaEQ3zltL5zGKV6Wf3PuASMvvhRXl8z8qKf_35cqaaAeKSo2Q9Jln-azfrr34PbzOOlzZaZYuDWxL5arm_4R9mtGR3Sfsj9-ShTlNCxMGN06gFN5920BieQ1AbiUfjBLRNCvTRcAUTTNlwGGWzVpfqdGudEkiQ-lN89uB95el2DuEfyJW_E5dtTTKpWwSEYaJQc-1ZqKU74d4imV2ENHCLwror_8EZuYaZ51caefF2SHC0JYTTA_uKYgP_FECA8Q_-j4IjYDn_ZmjdvhekseOw9ixb4f2uGavmMS9iVdBAbeqT7xIO8l66l4yZaRUC7isfxVvlhJDIVb4-gRWFgjzG6uSmMzHBhJL44Y26l0SXjQcNYytqFIhCBmM8ZP-SmusBWVAQAymVxHbPAYWXgqpQif7ESbchFfnl3NrBmMQzazxgNQt-ymStEY0d-GMFAIpZfZxFmXh9Y570HQn5LungV8fQy2VbMa-yw/https%3A%2F%2Fdoi.org%2F10.1198%2F000313006X152649>), so if you care about the significance of the difference, then you need to actually test the difference!
> For your other question
> 
> 
>> Trial refers to stimulus events.  The stimuli are the same on each Trial, although the order of the Trials varies between Drives.   But, yes, Trial is a sequence number for the repetition so that there could be some adaptation or change in response related to number of exposures.  (Assuming that is what you meant).  How would I include Trial as a continuous fixed effect?
> 
> I would use slightly different names to make things clear. Separate 'Trial' (a fixed series of stimuli) from SeqNo (the sequential position of a given Trial within a Drive).
> Then your model looks something like this:
> lmer(RT ~ 1 + Condition*PzAlpha + Drive + SeqNo + (1 | subject) + (1 | trial)
> 
> I've left out any interactions there, but I suspect you'll at least have an interaction with alpha and sequence number -- I imagine that later trials (i.e. higher sequence numbers) will have worse RTs (exhaustion effects) as will trials with higher alpha power and that this two effects will enhance each other. 
> Including sequence information in the model has received some attention in the psycholinguistic as well as the broader psychology literature as a way of controlling for adapt ion effects. GAMMs have been proposed for such cases to allow for non linear adaptation effects, but I wouldn't mess around with that until you feel much more comfortable with the standard LMMs.
> 
> And of course, if SeqNo doesn't improve model fit, you can simply omit it for parsimony and easy of both interpretation and fitting.
> 
> Phillip
> 
> On 25/01/18 17:33, Thierry Onkelinx wrote:
>> Dear Pam,
>> 
>> I'd probably combine both datasets in a single analysis.
>> 
>> Best regards,
>> 
>> ir. Thierry Onkelinx
>> Statisticus / Statistician
>> 
>> Vlaamse Overheid / Government of Flanders
>> INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE
>> AND FOREST
>> Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
>> thierry.onkelinx at inbo.be <mailto:thierry.onkelinx at inbo.be>
>> Havenlaan 88 bus 73, 1000 Brussel
>> www.inbo.be <http://www.inbo.be/>
>> 
>> ///////////////////////////////////////////////////////////////////////////////////////////
>> To call in the statistician after the experiment is done may be no
>> more than asking him to perform a post-mortem examination: he may be
>> able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher
>> The plural of anecdote is not data. ~ Roger Brinner
>> The combination of some data and an aching desire for an answer does
>> not ensure that a reasonable answer can be extracted from a given body
>> of data. ~ John Tukey
>> ///////////////////////////////////////////////////////////////////////////////////////////
>> 
>> 
>> 
>> 
>> 2018-01-24 14:02 GMT+01:00 P Greenwood <pgreenw1 at gmu.edu> <mailto:pgreenw1 at gmu.edu>:
>>> Dear Drs Alday and Onkelinx
>>> 
>>> I wondered if you had thoughts on the best way to conduct followup analysis
>>> of the between-subjects Condition to which people were randomly assigned.
>>> 
>>> Pam Greenwood
>>> 
>>> P.M. Greenwood, Ph.D.
>>> Associate Professor of Psychology
>>> Editorial Board, NeuroImage
>>> David King Hall 2052
>>> George Mason University
>>> MSN 3F5, 4400 University Drive
>>> Fairfax, VA 22030-4444
>>> 
>>> Ph: 703 993-4268
>>> fax: 703 993-1359
>>> email: Pgreenw1 at gmu.edu <mailto:Pgreenw1 at gmu.edu>
>>> http://psychology.gmu.edu/people/pgreenw1 <http://psychology.gmu.edu/people/pgreenw1>
>>> 
>>> On Jan 19, 2018, at 8:09 AM, P Greenwood <pgreenw1 at gmu.edu> <mailto:pgreenw1 at gmu.edu> wrote:
>>> 
>>> Thanks to you both.
>>> 
>>> Trial refers to stimulus events.  The stimuli are the same on each Trial,
>>> although the order of the Trials varies between Drives.   But, yes, Trial is
>>> a sequence number for the repetition so that there could be some adaptation
>>> or change in response related to number of exposures.  (Assuming that is
>>> what you meant).  How would I include Trial as a continuous fixed effect?
>>> 
>>> If the effect of Condition were “significant.” how would one decompose that
>>> to examine each group (Condition) separately?
>>> 
>>> Regards
>>> 
>>> Pam
>>> 
>>> 
>>> P.M. Greenwood, Ph.D.
>>> Associate Professor of Psychology
>>> Editorial Board, NeuroImage
>>> David King Hall 2052
>>> George Mason University
>>> MSN 3F5, 4400 University Drive
>>> Fairfax, VA 22030-4444
>>> 
>>> Ph: 703 993-4268
>>> fax: 703 993-1359
>>> email: Pgreenw1 at gmu.edu <mailto:Pgreenw1 at gmu.edu>
>>> http://psychology.gmu.edu/people/pgreenw1 <http://psychology.gmu.edu/people/pgreenw1>
>>> 
>>> On Jan 19, 2018, at 5:58 AM, Phillip Alday <phillip.alday at mpi.nl> <mailto:phillip.alday at mpi.nl> wrote:
>>> 
>>> Dear Pam, (dear Thierry,)
>>> 
>>> if I'm reading the description correctly, Pam is conceiving of Trial as
>>> being an "Item"-type factor (crossed with subject). To rephrase
>>> Thierry's comment a bit -- if Trial corresponds to an Item (concrete
>>> stimulus realization sampled from the population of possible stimuli for
>>> this manipulation) that is the same across subjects, then this is a good
>>> way to model that. If Trial doesn't correspond to an invariant set of
>>> items, but is rather just repetitions of the same task (perhaps with
>>> some random variation that isn't identical across subjects), then
>>> modeling Trial as a random effect doesn't really help much. However, if
>>> Trial is just a sequence number for the repetition, it might make sense
>>> to instead include Trial as a continuous fixed effect in order to model
>>> adaptation effects.
>>> 
>>> Best,
>>> Phillip
>>> 
>>> On 19/01/18 10:44, Thierry Onkelinx wrote:
>>> 
>>> Dear Pam,
>>> 
>>> You are handling condition and subject correctly.
>>> 
>>> There might be a problem with trial. Does trial indicates dependent
>>> replication of the study? Is there a common effect of trial X for all
>>> subjects? Because that is what your current model assumes. In case the
>>> trials are independent, then you don't need to include it in the
>>> model.
>>> 
>>> Note that Condition + PzAlpha + PzAlpha*Condition is verbose. You can
>>> write it as PzAlpha*Condition.
>>> 
>>> Best regards,
>>> 
>>> ir. Thierry Onkelinx
>>> Statisticus / Statistician
>>> 
>>> Vlaamse Overheid / Government of Flanders
>>> INSTITUUT VOOR NATUUR- EN BOSONDERZOEK / RESEARCH INSTITUTE FOR NATURE
>>> AND FOREST
>>> Team Biometrie & Kwaliteitszorg / Team Biometrics & Quality Assurance
>>> thierry.onkelinx at inbo.be <mailto:thierry.onkelinx at inbo.be>
>>> Havenlaan 88 bus 73, 1000 Brussel
>>> www.inbo.be <http://www.inbo.be/>
>>> 
>>> ///////////////////////////////////////////////////////////////////////////////////////////
>>> To call in the statistician after the experiment is done may be no
>>> more than asking him to perform a post-mortem examination: he may be
>>> able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher
>>> The plural of anecdote is not data. ~ Roger Brinner
>>> The combination of some data and an aching desire for an answer does
>>> not ensure that a reasonable answer can be extracted from a given body
>>> of data. ~ John Tukey
>>> ///////////////////////////////////////////////////////////////////////////////////////////
>>> 
>>> 
>>> 
>>> 
>>> 2018-01-18 18:51 GMT+01:00 P Greenwood <pgreenw1 at gmu.edu> <mailto:pgreenw1 at gmu.edu>:
>>> 
>>> Hello
>>> 
>>> I wanted some advice about handling subjects within groups and effects of
>>> group (randomly assigned).  I want to predict reaction time (RT) as a
>>> function of  “Condition,”  alpha band power (PzAlpha), and drive. People
>>> (subjects) are randomly assigned to Condition, of which there are two. Each
>>> person has data from 5 drives, and for each drive there are 10 trials.
>>> There are 19 subjects in one group and 20 in the other.
>>> 
>>> My question is this: Am I handling the “between subjects” factor of
>>> Condition correctly?  Also, am I treating subjects within group correctly?
>>> I am pasting in some of my data.  The output is below.
>>> 
>>> Regards
>>> 
>>> Pam Greenwood
>>> 
>>> library(lme4)
>>> library(lmerTest)
>>> INFAST_Behavioral <- read.csv(“….
>>> na.omit(INFAST_Behavioral)
>>> INFAST_Behavioral$RT = scale(INFAST_Behavioral$RT, center = TRUE, scale =
>>> TRUE)
>>> INFAST_Behavioral$PzAlpha = scale(INFAST_Behavioral$PzAlpha, center = TRUE,
>>> scale = TRUE)
>>> sumModelInteraction <- lmer(RT ~ 1 + (Condition + PzAlpha + Drive +
>>> PzAlpha*Condition) + (1 | subject) + (1 | trial), data = INFAST_Behavioral)
>>> summary(sumModelInteraction)
>>> 
>>> subject Condition               Drive           trial   FzAlpha CzAlpha
>>> PzAlpha FzTheta CzTheta PzTheta FzDelta CzDelta PzDelta         RT      ACC
>>> 1       HumanLanguage   1       1       -1.41   -4.3585 -5.5431 6.1516
>>> 1.5911  3.6247  22.38   18.181 13.812          1568.984857     1
>>> 1       HumanLanguage   1       2       -7.8605 2.0156  4.7392  15.992
>>> 12.122  6.9088  26.861 20.592  16.326  1721.359714     1
>>> 1       HumanLanguage   1       3       -2.6982 -5.6067 -10.038 6.285
>>> 5.5172  1.2894  13.565 12.981  11.63   1257.092571     1
>>> 1       HumanLanguage   1       4       3.3975  4.8789  -1.3249 7.0177
>>> 9.6703  6.1539  10.231 12.261  12.485  1559.461429     1
>>> …(skipping to Subject 2)
>>> 2       HumanLanguage                   1       1       1.6791  2.8887
>>> 0.28174 -11.387 -9.9352 3.5936 -1.5767 3.9401  6.7201          1302.328857
>>> 1
>>> 2       HumanLanguage   1       2       -13.284 -8.2603 -6.6124 -5.9373
>>> -8.7551 0.10394 4.5621 10.204  12.261  969.0088571     1
>>> 2       HumanLanguage   1       3       -0.048973       1.1329  0.67399
>>> -2.1432 2.5077  -2.4641 9.4667 10.883  7.1396  721.3997143     1
>>> 2       HumanLanguage   1       4       5.0779  6.8916  6.3892  -1.8682
>>> 3.1637  7.9712  8.0994 10.883  10.975  707.1145714     1
>>> 2       HumanLanguage   1       5       -7.0495 -2.782  3.1668  8.4332
>>> 10.646  9.3726  -3.5937 -7.3769 5.4472  892.8214286     1
>>> 2       HumanLanguage   1       6       -1.462  -8.1223 -6.5896 -10.895
>>> -5.6311 0.39941 7.5473 12.783  14.698  611.8802857     1
>>> 2       HumanLanguage   1       7       -2.6402 -5.1213 -3.7372 3.4542
>>> 4.2234  -0.99898        1.4089 4.1976  0.56587 761.8742857     1
>>> 2       HumanLanguage   1       8       3.4393  4.6302  1.5525  1.4604
>>> 3.1716  3.1622  -2.3427 2.908 4.2259  680.9251429     1
>>> 2       HumanLanguage   1       9       -0.81024        -0.21642
>>> -2.3876 2.5839  4.7307  1.5441 3.3761  8.4485  12.02   769.0168571     1
>>> 2       HumanLanguage   1       10      -6.4045 -4.4937 -2.2449 0.94456
>>> 2.7048  0.65565 -1.9791 0.26436 1.8435  885.6788571     1
>>> 
>>> Results:
>>> 
>>> Linear mixed model fit by REML t-tests use Satterthwaite approximations to
>>> degrees of freedom [
>>> lmerMod]
>>> Formula: RT ~ 1 + (Condition + PzAlpha + Drive + PzAlpha * Condition) +
>>>    (1 | subject) + (1 | trial)
>>>   Data: INFAST_Behavioral
>>> 
>>> REML criterion at convergence: 3876.4
>>> 
>>> Scaled residuals:
>>>    Min      1Q  Median      3Q     Max
>>> -3.4308 -0.5227 -0.1194  0.3547  8.4095
>>> 
>>> Random effects:
>>> Groups   Name        Variance Std.Dev.
>>> subject  (Intercept) 0.580073 0.76163
>>> trial    (Intercept) 0.004778 0.06912
>>> Residual             0.434918 0.65948
>>> Number of obs: 1839, groups:  subject, 39; trial, 10
>>> 
>>> Fixed effects:
>>>                                         Estimate               Std. Error
>>> df t value Pr(>|t|)
>>> (Intercept)                        -0.27054    0.17607   40.80000  -1.537
>>> 0.13213
>>> ConditionMachineLang 0.41644    0.24595   36.90000   1.693  0.09884 .
>>> PzAlpha                             0.01192    0.02411 1797.40000   0.494
>>> 0.62117
>>> Drive                               0.02948    0.01083 1788.40000   2.722
>>> 0.00655 **
>>> ConditionMachineLanguage:PzAlpha   -0.01998    0.03476 1803.10000  -0.575
>>> 0.56560
>>> ---
>>> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>>> P.M. Greenwood, Ph.D.
>>> Associate Professor of Psychology
>>> Editorial Board, NeuroImage
>>> David King Hall 2052
>>> George Mason University
>>> MSN 3F5, 4400 University Drive
>>> Fairfax, VA 22030-4444
>>> 
>>> Ph: 703 993-4268
>>> fax: 703 993-1359
>>> email: Pgreenw1 at gmu.edu <mailto:Pgreenw1 at gmu.edu>
>>> http://psychology.gmu.edu/people/pgreenw1 <http://psychology.gmu.edu/people/pgreenw1>
>>> 
>>> 
>>>        [[alternative HTML version deleted]]
>>> 
>>> _______________________________________________
>>> R-sig-mixed-models at r-project.org <mailto:R-sig-mixed-models at r-project.org> mailing list
>>> https://secure-web.cisco.com/1joP--B1_xWT50x7mVQZsmihBAOqrRroakmdBR5MIMiOARC9Fd1hE1yw-1sCnwGxdnwBghNSYF9p3BRdhCaL0o-KBtN4F3VSOMBOaVY1oHIj6WYPh_sr8e-zRksQa9F4ECA_XGS2Afp73TF2WsPYwPhZh0vxQMs_BOy--csyKCdriarDzsvIs-lPMcfSch2Ym2oCTwBXQ_YkEWQehip65TFdXUagB8dg1r-d1G0r841y-84pF20_DPQ6J18R57bYFsQp5D34gsd2C2Jf6WMFXlHUZLbGyg7TV0F8CEvUF6vNcNdjIJTUSz79up7bz_iYDKOezABzwahOdHoC45jHqvTmDYhjaqzCkPsymio7HL4h8UlFKyj0xzrIe3rEFvRQsMaNQdctVCMacfdjj-nJiV9Ab0-aVDdezvOlj8IwbPCwr9QwTBeZzUqOwf5ENxq1r/https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-sig-mixed-models <https://secure-web.cisco.com/1joP--B1_xWT50x7mVQZsmihBAOqrRroakmdBR5MIMiOARC9Fd1hE1yw-1sCnwGxdnwBghNSYF9p3BRdhCaL0o-KBtN4F3VSOMBOaVY1oHIj6WYPh_sr8e-zRksQa9F4ECA_XGS2Afp73TF2WsPYwPhZh0vxQMs_BOy--csyKCdriarDzsvIs-lPMcfSch2Ym2oCTwBXQ_YkEWQehip65TFdXUagB8dg1r-d1G0r841y-84pF20_DPQ6J18R57bYFsQp5D34gsd2C2Jf6WMFXlHUZLbGyg7TV0F8CEvUF6vNcNdjIJTUSz79up7bz_iYDKOezABzwahOdHoC45jHqvTmDYhjaqzCkPsymio7HL4h8UlFKyj0xzrIe3rEFvRQsMaNQdctVCMacfdjj-nJiV9Ab0-aVDdezvOlj8IwbPCwr9QwTBeZzUqOwf5ENxq1r/https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-sig-mixed-models>
>>> 
>>> 
>>> _______________________________________________
>>> R-sig-mixed-models at r-project.org <mailto:R-sig-mixed-models at r-project.org> mailing list
>>> https://secure-web.cisco.com/1joP--B1_xWT50x7mVQZsmihBAOqrRroakmdBR5MIMiOARC9Fd1hE1yw-1sCnwGxdnwBghNSYF9p3BRdhCaL0o-KBtN4F3VSOMBOaVY1oHIj6WYPh_sr8e-zRksQa9F4ECA_XGS2Afp73TF2WsPYwPhZh0vxQMs_BOy--csyKCdriarDzsvIs-lPMcfSch2Ym2oCTwBXQ_YkEWQehip65TFdXUagB8dg1r-d1G0r841y-84pF20_DPQ6J18R57bYFsQp5D34gsd2C2Jf6WMFXlHUZLbGyg7TV0F8CEvUF6vNcNdjIJTUSz79up7bz_iYDKOezABzwahOdHoC45jHqvTmDYhjaqzCkPsymio7HL4h8UlFKyj0xzrIe3rEFvRQsMaNQdctVCMacfdjj-nJiV9Ab0-aVDdezvOlj8IwbPCwr9QwTBeZzUqOwf5ENxq1r/https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-sig-mixed-models <https://secure-web.cisco.com/1joP--B1_xWT50x7mVQZsmihBAOqrRroakmdBR5MIMiOARC9Fd1hE1yw-1sCnwGxdnwBghNSYF9p3BRdhCaL0o-KBtN4F3VSOMBOaVY1oHIj6WYPh_sr8e-zRksQa9F4ECA_XGS2Afp73TF2WsPYwPhZh0vxQMs_BOy--csyKCdriarDzsvIs-lPMcfSch2Ym2oCTwBXQ_YkEWQehip65TFdXUagB8dg1r-d1G0r841y-84pF20_DPQ6J18R57bYFsQp5D34gsd2C2Jf6WMFXlHUZLbGyg7TV0F8CEvUF6vNcNdjIJTUSz79up7bz_iYDKOezABzwahOdHoC45jHqvTmDYhjaqzCkPsymio7HL4h8UlFKyj0xzrIe3rEFvRQsMaNQdctVCMacfdjj-nJiV9Ab0-aVDdezvOlj8IwbPCwr9QwTBeZzUqOwf5ENxq1r/https%3A%2F%2Fstat.ethz.ch%2Fmailman%2Flistinfo%2Fr-sig-mixed-models>
>>> 
>>> 
>>> 
> 


	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list