[R-sig-ME] cross-sex genetic correlation
Simona Kralj Fiser
simonakf at gmail.com
Thu Jul 27 11:38:20 CEST 2017
Dear Jarrod and Paul,
Thank you for your reply. We used the suggested prior and model
specifications, but we also LOG transformed our weight data (L). The new
values are mostly negative. We ran:
prior <- list(R=list(V=diag(2), nu=0.02), G=list(G1=list(V=diag(2), nu=2,
alpha.mu=c(0,0),alpha.V=diag(2)*1000)))
model14 <- MCMCglmm(L~sex, random=~us(sex):animal, rcov=~idh(sex):units,
prior=prior, pedigree=Ped, data=Data1, nitt=100000, burnin=10000, thin=10)
The resulting summary is:
*Iterations = 10001:99991*
* Thinning interval = 10*
* Sample size = 9000 *
* DIC: -466.781 *
* G-structure: ~us(sex):animal*
* post.mean l-95% CI u-95% CI eff.samp*
*sex1:sex1.animal 0.003846 4.515e-10 0.009540 4761*
*sex2:sex1.animal 0.001122 -6.715e-04 0.003216 1436*
*sex1:sex2.animal 0.001122 -6.715e-04 0.003216 1436*
*sex2:sex2.animal 0.002096 1.310e-11 0.004439 5447*
* R-structure: ~idh(sex):units*
* post.mean l-95% CI u-95% CI eff.samp*
*sex1.units 0.019094 0.012842 0.025643 5700*
*sex2.units 0.007019 0.004553 0.009551 6510*
* Location effects: L ~ sex *
* post.mean l-95% CI u-95% CI eff.samp pMCMC *
*(Intercept) -0.9866 -1.0150 -0.9599 9521 <1e-04 ****
*sex2 -0.2536 -0.2843 -0.2227 9000 <1e-04 ****
*---*
*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1*
With LOG values, the “subscript out of bounds” problem in gone, herit()
analyses run and the resulting heritability and correlation values are
reasonable. However, the HPD interval is extremely wide.
*> **herit14<-model14$VCV[,'sex1:sex1.animal']/(model14$VCV[,'sex1:sex1.animal']+model14$VCV[,'sex1.units'])*
*> **herit15<-model14$VCV[,'sex2:sex2.animal']/(model14$VCV[,'sex2:sex2.animal']+model14$VCV[,'sex2.units'])*
*> **mean(herit14)*
*[1] 0.1643911*
*> **mean(herit15)*
*[1] 0.226494*
*> **corr.gen <- model14$VCV[,
'sex1:sex2.animal']/sqrt(model14$VCV[,'sex1:sex1.animal']*model14$VCV[,'sex2:sex2.animal'])*
*> **mean(corr.gen)*
*[1] 0.4729393*
*> **HPDinterval(herit14)*
* lower upper*
*var1 2.149316e-08 0.3883343*
*attr(,"Probability")*
*[1] 0.95*
*> **HPDinterval(herit15)*
* lower upper*
*var1 1.539724e-09 0.4509762*
*attr(,"Probability")*
*[1] 0.95*
*> **HPDinterval(corr.gen)*
* lower upper*
*var1 -0.1849416 0.999439*
*attr(,"Probability")*
*[1] 0.95*
We are starting to run out of ideas on why this is happening or where the
problem lies. We’d appreciate any further advice!
Eva and Simona
On 26 July 2017 at 14:42, Jarrod Hadfield <j.hadfield at ed.ac.uk> wrote:
> Hi,
>
> The second way is a *much* better way of doing it but should give the same
> answer. However, in both cases the residual covariance is not identifiable
> (no individual is both male and female) and so you should use idh rather
> than us.
>
> The "subscript out of bounds" error is to do with your code that
> post-processes the model output not an issue with MCMCglmm. Probably you
> have used the wrong names for the (co)variance components.
>
> Also, you haven't passed the prior to MCMCglmm, nor is the prior a valid
> one for the problem as it specifies scalar variances rather than 2x2
> covariance matrices. You could try
>
> prior2 <- list(R=list(V=diag(2), nu=0.02), G=list(G1=list(V=diag(2), nu=2,
> alpha.mu=c(0,0),alpha.V=diag(2)*1000)))
>
> Cheers,
>
> Jarrod
>
>
>
>
> On 26/07/2017 13:33, Simona Kralj Fiser wrote:
>
>> model <- MCMCglmm(W~sex, random=~us(sex):animal, rcov=~us(sex):units,
>> prior=prior2, pedigree=Ped, data=Data1, nitt=100000, burnin=10000,
>> thin=10)
>>
>
>
> --
> The University of Edinburgh is a charitable body, registered in
> Scotland, with registration number SC005336.
>
>
--
Doc. Dr. Simona Kralj-Fišer
Institute of Biology
Scientific Research Centre of the Slovenian Academy of Sciences and Arts
Novi trg 2, P. O. Box 306, SI-1001 Ljubljana.
Phone: ++38614706333; fax: ++38614257797
http://ezlab.zrc-sazu.si/
http://bijh.zrc-sazu.si/sl/sodelavci/simona-kralj-fi%C5%A1er-sl#v
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list