[R-sig-ME] Interpreting variances for random effects
Chen, Gang (NIH/NIMH) [C]
gangchen at mail.nih.gov
Mon Jun 12 19:23:04 CEST 2017
I’m trying to run a meta mixed-effects model with the R package ‘blme’, but I have trouble understanding the variances for the random effects in the output. Let me demonstrate my questions with the following dataset:
dat <- read.table(text='
Subj ses Beta vi
s20447 T1 0.0918712467 0.06086247
s20973 T1 0.0275931843 0.08578725
s21163 T1 0.0159543231 0.01198331
s21209 T1 0.2722044587 0.05239982
s21590 T1 -0.2647554576 0.04842246
s21606 T1 -0.0915029198 0.02063762
s21728 T1 -0.1098448336 0.08973302
s22177 T1 0.0070983637 0.01515363
s22380 T1 0.0660349280 0.10569247
s22437 T1 -0.0825878531 0.12504976
s22481 T1 -0.3160937428 0.05636208
s22542 T1 -0.3765429556 0.05385343
s22660 T1 0.1904570013 0.01808839
s22687 T1 -0.3090784848 0.03609267
s22717 T1 -0.5519740582 0.08041095
s22774 T1 0.0318013728 0.01584950
s22819 T1 -0.0250370707 0.01560509
s22828 T1 0.1122434586 0.07531304
s22834 T1 -0.0590136759 0.04191800
s22861 T1 -0.0165097713 0.02500125
s22881 T1 0.0004725010 0.01726706
s22959 T1 0.3902115524 0.04177956
s23107 T1 0.0069795060 0.01592698
s23154 T1 0.0790746883 0.09956493
s23193 T1 0.5274482369 0.02718767
s20447 T2 -0.0148665439 0.03070799
s20973 T2 0.1085031107 0.07011064
s21163 T2 -0.0075897672 0.00944575
s21209 T2 -0.4167304039 0.02853584
s21590 T2 0.0006625475 0.04409404
s21606 T2 0.1917003244 0.02087413
s21728 T2 -0.1185217202 0.05121711
s22177 T2 -0.0446757786 0.01802203
s22380 T2 -0.3420846760 0.08059885
s22437 T2 -0.0735468194 0.19387151
s22481 T2 0.1410380155 0.02487867
s22542 T2 -0.1882588267 0.04918930
s22660 T2 0.0079449303 0.03648700
s22687 T2 0.1746368855 0.03746678
s22717 T2 -0.2987288833 0.05659567
s22774 T2 -0.1838540286 0.04245462
s22819 T2 -0.2798163295 0.01841418
s22828 T2 -0.5080602765 0.14406914
s22834 T2 -0.1628637910 0.02220246
s22861 T2 0.2190277874 0.03104834
s22881 T2 -0.1975046396 0.01770617
s22959 T2 -0.1411849707 0.03163359
s23107 T2 -0.0360546894 0.01652099
s23154 T2 0.5842899084 0.08301191
s23193 T2 -0.2372864336 0.02257293', header=T)
require('blme')
summary(blmer(Beta~1+ses+(1|Subj), data=dat, resid.prior = point, cov.prior=gamma(shape = 2, rate = 0.5, posterior.scale = 'sd'), weights=1/vi))
…
Random effects:
Groups Name Variance Std.Dev.
Subj (Intercept) 0.02706 0.1645
Residual 1.00000 1.0000
Number of obs: 50, groups: Subj, 25
…
convergence code: 0
Model failed to converge with max|grad| = 6.50544 (tol = 0.002, component 1)
Warning message:
In get("checkConv", lme4Namespace)(attr(opt, "derivs"), opt$par, :
Model failed to converge with max|grad| = 6.50544 (tol = 0.002, component 1)
Here are my questions:
1. I’ve been using the variance prior of “gamma(shape = 2, rate = 0.5, posterior.scale = 'sd')” as a weakly informative prior, which usually works fine. However, this is the first time I have the convergence problem. Could you offer some suggestion as to how to deal with the convergence issue like this? I tried to change the shape parameter from 2 to 20 , which seems to get rid of the convergence problem, but I don’t feel comfortable with such a large and strong shape parameter value. Maybe the convergence failure is OK per Dr. Bolker’s suggestion (http://bbolker.github.io/mixedmodels-misc/notes/bglmer_cmp.html) in another thread?
2. The variance for “Subj” is what I’m interested here. It seems the variance for “Residual” is always 1 when the option “weights” is used. How to interpret this? Does it mean that the variance for “Subj” should be interpreted as being scaled somehow?
Thanks,
Gang
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list