[R-sig-ME] Plot model average
Pin chanratana
chanratana.pin at gmail.com
Mon Apr 24 04:54:42 CEST 2017
Hello everyone here,
I'm analyzing my data research on wildlife using of seasonal waterholes.
I did the model average (of the 2 models below) using #model.avg function
(package MuMIn).
glmmadmb(BT~water+tree+offset(log(trap))+(1|obs), family="nbinom",
data=ndata4)
glmmadmb(BT~water+tree+road+offset(log(trap))+(1|obs), family="nbinom",
data=ndata4)
Model-averaged coefficients:
(full average)
Estimate Std. Error Adjusted SE z value Pr(>|z|)
(Intercept) -3.33821 0.16062 0.16128 20.698 <2e-16 ***
water -0.42935 0.18091 0.18166 2.364 0.0181 *
tree 0.28022 0.11639 0.11684 2.398 0.0165 *
road 0.05068 0.09926 0.09950 0.509 0.6105
(conditional average)
Estimate Std. Error Adjusted SE z value Pr(>|z|)
(Intercept) -3.3382 0.1606 0.1613 20.698 <2e-16 ***
water -0.4294 0.1809 0.1817 2.364 0.0181 *
tree 0.2802 0.1164 0.1168 2.398 0.0165 *
road 0.1315 0.1222 0.1227 1.071 0.2841
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Relative variable importance:
offset(log(trap)) tree water road
Importance: 1.00 1.00 1.00 0.39
N containing models: 2 2 2 1
How can I plot the beta coefficient of model average above?
Thanks,
Ratana
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list