[R-sig-ME] brms: Multivariate LMEM with systematic missing data
Jarrod Hadfield
j.hadfield at ed.ac.uk
Thu Feb 2 12:45:38 CET 2017
Hi,
I'm just about to board a plane, so briefly, the equivalent MCMCglmm
code is:
m1 <- MCMCglmm(cbind(dep1, dep2, dep3) ~ trait-1+trait:group, random = ~us(at.level(trait,1):(1+meas)):id+us(at.level(trait,2):(1+meas)):id+us(at.level(trait,3):(1+meas)):id,
rcov = ~us(trait):units, data = dat, family = c("gaussian",
"gaussian", "gaussian"),
verbose = FALSE)
Cheers,
Jarrod
On 02/02/2017 10:04, Koen Neijenhuijs wrote:
> m1 <- MCMCglmm(cbind(dep1, dep2, dep3) ~ group-1, random = ~us(1+meas):id,
> rcov = ~us(trait):units, data = dat, family = c("gaussian",
> "gaussian", "gaussian"),
> verbose = FALSE)
--
The University of Edinburgh is a charitable body, registered in
Scotland, with registration number SC005336.
More information about the R-sig-mixed-models
mailing list