[R-sig-ME] Random effect 'overlap' with fixed effect

Chung-Huey Wu chung.huey.wu at gmail.com
Wed Jan 18 05:59:39 CET 2017


Hello all,

This is my first post in r-sig-ME. I have benefited and learned a lot from
the threads here. In this email I would like to ask for comments on the
correct way to specify my random effect term (sampling site), which
'overlap' with the fixed effect of main interest (altitude).

I am now using nlme, lme4, and glmmADMB to analyze altitudinal survey data
of plant traits.

Below is the structure of the data I am now have trouble analyzing:
=======================================
a) Research design: In every Jan, Apr, Jul, Oct from Jul-2012 to Oct-2015,
we visited the 3 sites at low altitude and 3 sites at medium altitude,
haphazardly selected 6 individual plants of the focal species, and measured
traits and # herbivore for each individual.

b) Hypothesis to test:  Does the trait/# herbivore vary across altitude and
month? Are there interactions?

c) Notations:
alt (altitude): L (low) vs. M (medium); a 2-level factor.
m (month): Jan, Apr, Jul, Oct; a 4-level factor.
site (sampling site): 3 at low- and 3 at medium-altitude Taiwan; a 6-level
factor with unique location names.
y (year of survey): 2012-2015; a 4-level factor.
--------
C_count (# chewing herbivore):  discrete (count) response variable. Many
zeros, mostly 1-3, a few large values (10,17,22).
mT (physical leaf toughness): continuous response variable.


d) My model structure and outputs:
mod_T = lme(mT ~ m + alt + m:alt, random = ~ 1|site/y,
                 weights = varIdent(form = ~1|alt),
                 contrasts = c(list(m=contr.sum,alt=contr.sum)),
                 na.action = "na.omit", data = dat))
#### weights model form (1|alt) is AIC-selected to control
for heteroskedasticity.

Linear mixed-effects model fit by REML
 Data: dat
       AIC      BIC    logLik
  3533.131 3591.853 -1752.565

Random effects:
Formula: ~1 | site
             (Intercept)
StdDev:    5.603294

Formula: ~1 | y %in% site
               (Intercept)  Residual
StdDev:    4.142521  9.003203

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | m
 Parameter estimates:
     July       Oct       Jan       Apr
1.0000000 0.7836473 0.7696658 1.0022467

Fixed effects: mT ~ m + alt + m:alt
                  Value     Std.Error  DF    t-value      p-value
(Intercept) 39.38305  3.590926  468 10.967380  0.0000
mApr         7.57426   1.548235  468  4.892190   0.0000
mJuly        8.44167   1.457696  468  5.791103   0.0000
mOct         4.19561   1.300168  468  3.226973   0.0013
altM          -2.72082   5.093589   4   -0.534166   0.6215
mApr:altM   -2.31793  2.224683 468 -1.041916   0.2980
mJuly:altM  -3.14538  2.098787 468 -1.498666   0.1346
mOct:altM   -3.09390  1.880431 468 -1.645314   0.1006
 Correlation:
           (Intr) mApr   mJuly  mOct   altM   mApr:M mJly:M
mApr       -0.160
mJuly      -0.191  0.394
mOct       -0.214  0.442  0.527
altM       -0.705  0.113  0.135  0.151
mApr:altM   0.111 -0.696 -0.274 -0.307 -0.171
mJuly:altM  0.133 -0.274 -0.695 -0.366 -0.201  0.414
mOct:altM   0.148 -0.305 -0.364 -0.691 -0.225  0.462  0.546

Standardized Within-Group Residuals:
        Min          Q1         Med          Q3         Max
-2.49626272 -0.70206429 -0.03138199  0.59483874  3.00467177

Number of Observations: 498
Number of Groups:
       site y %in% site
          6          24

------------------------------------------------------------------------------------------
mod_C = glmmadmb(C_count ~ m + alt + m:alt + (1|site/y),
                    family = "nbinom",
                    zeroInflation = TRUE, data= dat)
#### AIC(nbinom model) << AIC(poisson model), so use nbinom

AIC: 686.6

Coefficients:
                   Estimate Std. Error  z value  Pr(>|z|)
(Intercept)  -0.70537    0.47722   -1.48    0.1394
mApr          0.00304    0.63689    0.00    0.9962
mJuly         -1.24819    0.63544   -1.96   0.0495 *
mOct         -0.36723    0.60261   -0.61    0.5423
altM           -1.63873    0.73215   -2.24   0.0252 *
mApr:altM   0.81522    0.94844    0.86    0.3900
mJuly:altM  3.21364    0.88936    3.61    0.0003 ***
MonthOct:AltM   1.21148    0.89989    1.35    0.1782
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: total=499, Site=6, Site:Year=24
Random effect variance(s):
Group=Site
            Variance StdDev
(Intercept)  0.03713 0.1927
Group=Site:Year
            Variance StdDev
(Intercept)   0.2289 0.4785

Negative binomial dispersion parameter: 0.17887 (std. err.: 0.036541)
Zero-inflation: 1.0132e-06  (std. err.:  0.00013482 )

Log-likelihood: -331.319
Warning message:
In .local(x, sigma, ...) :
  'sigma' and 'rdig' arguments are present for compatibility only: ignored
================================================

My Questions:
1) Is it reasonable to include (1|site/y)? Since site effect is mixed up
with altitude effect (my main focus), I am worried that adding 'site' as
random effect would disturb the estimation of altitude effect (which seems
strong based on plotted data), or even cause estimation problem?  (for
example, in summary(mod_T), the DF of the 'altM' term is so small (4)
compared to models without site random effect (~480, attached below for
your reference)).
2) One step back, are lme() (for controlling heteroskedasticity) and
glmmadmb() (for accounting for zero-inflation) the right choices for this
analysis?


I would appreciate your comments and help.
Thank very much!

Chung-Huey Wu


####################################################
[WITHOUT site random effect]
mod_T = lme(mT ~ m + alt + m:alt, random = ~ 1|y,
                 weights = varIdent(form = ~1|alt),
                 contrasts = c(list(m=contr.sum,alt=contr.sum)),
                 na.action = "na.omit", data = dat))

Linear mixed-effects model fit by REML
 Data: dat
       AIC      BIC   logLik
  3672.361 3726.888 -1823.18

Random effects:
 Formula: ~1 | y
        (Intercept) Residual
StdDev:    3.515026 9.344131

Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | m
 Parameter estimates:
     July       Oct       Jan       Apr
1.0000000 1.0896624 0.9214424 1.0804838
Fixed effects: mT ~ m + alt + m:alt
               Value Std.Error  DF   t-value p-value
(Intercept) 39.65193  2.135613 487 18.567007  0.0000
mApr         7.57426  1.805682 487  4.194680  0.0000
mJuly        8.17279  1.638495 487  4.987985  0.0000
mOct         3.92672  1.706423 487  2.301144  0.0218
altM        -3.48711  1.709890 487 -2.039375  0.0420
mApr:altM   -1.32758  2.588246 487 -0.512928  0.6082
mJuly:altM  -2.37910  2.312807 487 -1.028662  0.3041
mOct:altM   -2.32762  2.409046 487 -0.966198  0.3344
 Correlation:
           (Intr) mApr   mJuly  mOct   altM   mApr:M mJly:M
mApr       -0.356
mJuly      -0.421  0.464
mOct       -0.404  0.446  0.526
altM       -0.376  0.445  0.490  0.471
mApr:altM   0.248 -0.698 -0.324 -0.311 -0.661
mJuly:altM  0.278 -0.329 -0.682 -0.348 -0.739  0.488
mOct:altM   0.267 -0.316 -0.348 -0.684 -0.710  0.469  0.525

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max
-2.2019475 -0.7909630 -0.0548838  0.7254892  3.0912138

Number of Observations: 498
Number of Groups: 4
####################################################

	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list