[R-sig-ME] Anova II table, df, drop1 and very complex regression models!

Thierry Onkelinx thierry.onkelinx at inbo.be
Tue Aug 30 09:29:53 CEST 2016


Dear Shadiya,

You need to do the model selection on a stable dataset. Therefore you
should create a subset which doesn't contain missing values in the
covariates. Use this subset for model selection. Then you can refit the
final model on the total dataset.

Best regards,

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium

To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey

2016-08-30 7:23 GMT+02:00 Shadiya Al Hashmi <saah500 op york.ac.uk>:

> Good morning,
>
>
> I have complex data of 7 variables (6 treatment + 1 control [“age” in the
> model below]) plus 18 interactions in a dataset of 2448 observations which
> have some missing values (NAs).  The maximal model which I have simplified
> as per y hypothesis is as follows.
>
>
>
> modelAAW<-glmer(match~Listgp + vowel.quality + stimulus.presentation +
> context +length + age + freq.+ Listgp:context+ Listgp:length+ Listgp:freq.+
> Listgp:stimulus.presentation+ Listgp:age+ context:length+ context:freq.+
> context:stimulus.presentation+ context:age+ length:freq.+
> length:stimulus.presentation+ length:age+ freq.:stimulus.presentation+
> freq.:age+ stimulus.presentation:age+  Listgp:stimulus.presentation +
> Listgp:vowel.quality + stimulus.presentation:vowel.quality +
> (Listgp|stimulus) + (stimulus.presentation+vowel.quality|listener) , data
> =
> SBAAW, family = "binomial", control=glmerControl(optCtrl=
> list(maxfun=2e5)),
> nAGQ =1)
>
>
>
> I ran a binomial logistic regression analysis on the data and did the
> stepwise regression manually since the drop1(modelAAW, test = "Chisq")
> command yielded no results in a span of more than 16 hours. The resulting
> regression models are nested in the maximal model (modelAAW).
>
>
>
> Then, I reached the model selection step where I have to interpret the
> anova table below which has degrees of freedom of zero for some models.
>
>
>
>          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
>
> AAWXI    49 2454.5 2738.8 -1178.2   2356.5
>
> AAWXII   49 2456.4 2740.8 -1179.2   2358.4 0.0000      0     1.0000
>
> AAWXIII  49 2456.4 2740.8 -1179.2   2358.4 0.0000      0     1.0000
>
> AAWIX    51 2457.6 2753.5 -1177.8   2355.6 2.8749      2     0.2375
>
> AAWX     51 2457.6 2753.5 -1177.8   2355.6 0.0000      0     1.0000
>
> AAWVI    52 2458.6 2760.4 -1177.3   2354.6 0.9410      1     0.3320
>
> AAWVII   52 2458.6 2760.4 -1177.3   2354.6 0.0075      0     <2e-16 ***
>
> AAWVIII  52 2458.6 2760.3 -1177.3   2354.6 0.0094      0     <2e-16 ***
>
> AAWV     54 2458.4 2771.7 -1175.2   2350.4 4.2412      2     0.1200
>
> AAWIII   56 2461.9 2786.9 -1175.0   2349.9 0.4275      2     0.8076
>
> AAWIV    56 2461.9 2786.9 -1175.0   2349.9 0.0000      0     1.0000
>
> AAWII    57 2463.9 2794.7 -1175.0   2349.9 0.0215      1     0.8835
>
> AAWI     60 2467.9 2816.1 -1174.0   2347.9 1.9763      3     0.5773
>
> modelAAW 66 2474.4 2857.3 -1171.2   2342.4 5.5778      6     0.4721
>
> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
>
>
>
>
>
> So many people that I have consulted tell me that I shouldn’t trust a model
> of df=zero and advise that I should re-run the models using the drop1
> command or simplify the maximal model but in my case I don’t know if I will
> ever get results especially that it took more than 16 hours straight with
> no luck and I simplified the maximal model to the best I could.
>
>
>
> When I checked R documentation, I read that “when given a sequence of
> objects, anova tests the models against one another in the order specified”
> based on the AIC value from the smallest to the largest.  However, there
> is  a warning that “the comparison between two or more models will only be
> valid if they are fitted to the same dataset. This may be a problem if
> there are missing values and R's default of na.action = na.omit is used”,
> so I’m assuming this is the case with my models.
>
>
>
> Now, should I select model AAWVIII since it has the least p-value (and the
> least BIC value compared to AAWVII)?
>
>
>
> The formulas of the two models in addition to AAWXI model are as follows.
> The first two models are similar to each other except that in AAWVIII the
> variable stimulus.presentation is deleted and in model AAWXI the variable
> Listgp is deleted.
>
>
> AAWVI<-glmer(match~Listgp + vowel.quality + stimulus.presentation + context
> + age + freq.+ Listgp:freq.+ Listgp:stimulus.presentation+ context:length+
> context:freq.+ context:stimulus.presentation+length:stimulus.presentation+
> length:age+ freq.:stimulus.presentation+ freq.:age+
> stimulus.presentation:age+ + Listgp:stimulus.presentation +
> Listgp:vowel.quality + stimulus.presentation:vowel.quality +
> (Listgp|stimulus) + (stimulus.presentation+vowel.quality|listener) , data
> =
> SBAAW, family = "binomial", control=glmerControl(optCtrl=
> list(maxfun=2e5)),
> nAGQ =1)
>
>
>
> AAWVIII<-glmer(match~Listgp + vowel.quality + context + age + Listgp:freq.+
> Listgp:stimulus.presentation+ context:length+ context:freq.+
> context:stimulus.presentation+length:stimulus.presentation+ length:age+
> freq.:stimulus.presentation+ freq.:age+ stimulus.presentation:age+ +
> Listgp:stimulus.presentation + Listgp:vowel.quality +
> stimulus.presentation:vowel.quality + (Listgp|stimulus) +
> (stimulus.presentation+vowel.quality|listener) , data = SBAAW, family =
> "binomial", control=glmerControl(optCtrl=list(maxfun=2e5)), nAGQ =1)
>
>
>
> AAWXI<-glmer(match~vowel.quality + context + age + Listgp:freq.+
> Listgp:stimulus.presentation+ context:length+ context:freq.+
> context:stimulus.presentation+length:stimulus.presentation+
> freq.:stimulus.presentation+ freq.:age+ stimulus.presentation:age+ +
> Listgp:stimulus.presentation + Listgp:vowel.quality +
> stimulus.presentation:vowel.quality + (Listgp|stimulus) +
> (stimulus.presentation+vowel.quality|listener) , data = SBAAW, family =
> "binomial", control=glmerControl(optCtrl=list(maxfun=2e5)), nAGQ =1)
>
>
>
> I would appreciate your help with this.
>
>
>
> --
> Shadiya
>
>         [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models op r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models

	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list