[R-sig-ME] individual variation in reaction norm
Simona Kralj Fiser
simonakf at gmail.com
Tue Jul 26 16:53:05 CEST 2016
I wanted to analyse individual variance in reaction norm for activity in a
novel environment test. I measured ACTIVITY in trial 1 and then again on
the same individuals (ID) on trial2 (=trialN). I used below scripts and
compared their DICs. However, I am not even sure what is the difference
between models, and which tells me the variance in the reaction norm? In
one case DIC is even negative. I guess that's bad…Any hints?
E.g.
prior.1<-list(R=list(V=1, nu=0.002),G=list(G1=list(V=1, nu=0.002)))
*ma2rs<- MCMCglmm(ACTIVITY~ trialN, random=~idh(trialN):ID, data = F,
family="gaussian", prior = prior.1, nitt=530000,thin=5000,burnin=30000,
verbose = FALSE)*
summary(ma2rs)
Iterations = 30001:525001
Thinning interval = 5000
Sample size = 100
DIC:
*84.24017 *
G-structure: ~us(trialN):ID
post.mean l-95% CI u-95% CI eff.samp
trialN:trialN.ID 0.02541 0.008237 0.04164 100
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.0862 0.06513 0.1306 100
Location effects: ACTIVITY ~ trialN
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 1.31808 1.16730 1.48222 100 <0.01 **
trialN 0.11417 0.01064 0.21595 100 0.02 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> posterior.mode(ma1rs$VCV)
trialN:trialN.ID units
0.02282208 0.08220128
> HPDinterval(ma1rs$VCV)
lower upper
trialN:trialN.ID 0.008236589 0.04163621
units 0.065134787 0.13057164
attr(,"Probability")
[1] 0.95
*ma3rs<- MCMCglmm(ACTIVITY ~ trialN, random=~ID, data = F,
family="gaussian", prior = prior.1, nitt=530000,thin=5000,burnin=30000,
verbose = FALSE)*
summary(ma3rs)
Iterations = 30001:525001
Thinning interval = 5000
Sample size = 100
DIC: *55.74573*
G-structure: ~ID
post.mean l-95% CI u-95% CI eff.samp
ID 0.09563 0.03688 0.1353 100
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.06223 0.04318 0.08476 133.3
Location effects: ACTIVITY ~ trialN
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 1.3194 1.2170 1.4839 100 <0.01 **
trialN 0.1110 0.0329 0.1783 100 0.02 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> posterior.mode(ma3rs$VCV)
ID units
0.10238123 0.05860673
> HPDinterval(ma3rs$VCV)
lower upper
ID 0.03688181 0.13526359
units 0.04318352 0.08476018
attr(,"Probability")
[1] 0.95
*ma4rs<- MCMCglmm(ACTIVITY ~ trialN, random=~trialN:ID, data = F,
family="gaussian", prior = prior.1, nitt=530000,thin=5000,burnin=30000,
verbose = FALSE)*
summary(ma4rs)
Iterations = 30001:525001
Thinning interval = 5000
Sample size = 100
* DIC: -76.73263 *
G-structure: ~trialN:ID
post.mean l-95% CI u-95% CI eff.samp
trialN:ID 0.073 0.0004997 0.1634 100
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.08064 0.0006196 0.174 100
Location effects: ACTIVITY ~ trialN
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 1.31570 1.11754 1.53055 100 <0.01 **
trialN 0.10979 -0.01834 0.25725 100 0.12
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> posterior.mode(ma4rs$VCV)
trialN:ID units
0.002223456 0.003016048
> HPDinterval(ma4rs$VCV)
lower upper
trialN:ID 0.0004997280 0.1633640
units 0.0006195642 0.1739676
attr(,"Probability")
[1] 0.95
--
Thanks.
S
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list