[R-sig-ME] lme with interaction: how to decide which treatment is more efficaceous? how to deal with p value column of the lme summary?

Thierry Onkelinx thierry.onkelinx at inbo.be
Tue Mar 22 11:26:59 CET 2016


Dear Martina,

I would reparametrise the model.

lme(var ~ treatment + treatment:period+treatment:side,
           method="ML",
           random=list(IDlog=~1), na.action=na.omit,
           data=changes)

Another option is to use glht() from the multcomp package and specify
specific contrasts.

Best regards,

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium

To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey

2016-03-21 16:58 GMT+01:00 Martina Giovannella via R-sig-mixed-models <
r-sig-mixed-models op r-project.org>:

>
> I am using an lme to check the effect of 3 types of treatment (A,B, C) on
> my variable, over time. I do not expect any effect of treatment A, which is
> a fake treatment.
>
> I have measurement over 5 periods,on 2 sides.
>
> My question is: for each treatment and each period, is my variable
> different from the reference point (treatment A, period 1)?
>
> My model is
>
>             lme(var ~ treatment*period+side,
>            method="ML",
>            random=list(IDlog=~1), na.action=na.omit,
>            data=changes)
>
> This is the anova of the model
>
>     numDF denDF  F-value p-value
>     (Intercept)          1   473 79.36094  <.0001
>     treatment            2   473  3.49473  0.0311
>     period               4   473 12.51296  <.0001
>     side                 1   473 12.16210  0.0005
>     treatment:period     8   473  2.02865  0.0416
>
> and the summary for fixed effects
>
>     Fixed effects: var ~ treatment * period + hemisphere
>                        Value Std.Error  DF   t-value p-value
>     (Intercept)         4.622038  3.180983 473  1.453022  0.1469
>     treatmentB         -1.376755  3.703398 473 -0.371754  0.7102
>     treatmentC         -1.113021  3.703398 473 -0.300540  0.7639
>     period2             3.799946  4.168792 473  0.911522  0.3625
>     period3             6.124463  4.168792 473  1.469122  0.1425
>     period4             4.309267  4.168792 473  1.033697  0.3018
>     period5             5.482068  4.168792 473  1.315026  0.1891
>     sideright          -4.278672  1.226887 473 -3.487420  0.0005
>     treatmentB:period2  4.059350  5.190104 473  0.782133  0.4345
>     treatmentC:period2  7.508426  5.190104 473  1.446681  0.1486
>     treatmentB:period3  1.965207  5.190104 473  0.378645  0.7051
>     treatmentC:period3  5.312525  5.190104 473  1.023587  0.3066
>     treatmentB:period4  9.031016  5.190104 473  1.740045  0.0825
>     treatmentC:period4  7.819397  5.190104 473  1.506597  0.1326
>     treatmentB:period5 13.620365  5.190104 473  2.624295  0.0090
>     treatmentC:period5  4.224340  5.215896 473 0.809897  0.4184
>
> The anova states the treatment has an effect, period as well, and there is
> an interaction between treatment and period. Sides are different. This is
> what I expected.
>
> How can I use the p values columns to state for which treatment and which
> period I see a difference from the reference value?
>
> What I would like to retrieve is the numbers I obtain when I test each
> treatment separately. I know how to obtain the mean, what I have to sum up
> in the value column. What about the p values?
>
> Treatment A
>
>     Fixed effects: var ~ period + hemisphere
>                     Value Std.Error DF    t-value p-value
>     (Intercept)      1.849555  3.768596 94  0.4907810  0.6247
>     period2          3.799946  4.174739 94  0.9102236  0.3650
>     period3          6.124463  4.174739 94  1.4670291  0.1457
>     period4          4.309267  4.174739 94  1.0322244  0.3046
>     period5          5.482068  4.174739 94  1.3131524  0.1923
>     sideright       -1.142925  2.640337 94 -0.4328710  0.6661
>
> Anova
>
>     numDF denDF  F-value p-value
>     (Intercept)     1    94 4.967367  0.0282
>     period          4    94 0.654946  0.6248
>     side            1    94 0.187377  0.6661
>
> Treatment B
>
>     Fixed effects: var ~ period + hemisphere
>                     Value Std.Error  DF   t-value p-value
>     (Intercept)      4.674863  2.938724 175 1.590780  0.1135
>     period2          7.859296  3.241315 175  2.424724  0.0163
>     period3          8.089670  3.241315 175  2.495799  0.0135
>     period4         13.340283  3.241315 175  4.115700  0.0001
>     period5         19.102433  3.241315 175  5.893420  0.0000
>     sideright       -7.137831  2.049988 175 -3.481889  0.0006
>
> Anova
>
>             numDF denDF  F-value p-value
>     (Intercept)     1   175 34.37766  <.0001
>     period          4 175 9.60042  <.0001
>     side            1   175 12.12355   6e-04
>
> Treatment C
>
>     Fixed effects: var ~ period + hemisphere
>                     Value Std.Error  DF   t-value p-value
>      (Intercept)      2.936039  2.166417 173  1.355251  0.1771
>     period2         11.308372  2.392119 173  4.727346  0.0000
>     period3         11.436988  2.392119 173  4.781112  0.0000
>     period4         12.128664  2.392119 173  5.070260  0.0000
>     period5          9.949632  2.428331 173  4.097314  0.0001
>     sideright       -3.132715  1.520530 173 -2.060278  0.0409
>
> Anova
>
>            numDF denDF  F-value p-value
>     (Intercept)     1   173 58.13208  <.0001
>     period          4 173 8.99083  <.0001
>     side            1   173  4.24474  0.0409
>
> From this test it is very clear that for treatment A, var is not bigger in
> any period respect to the reference point, while it is for treatment B and
> C; right side smaller than left.
>
> I want to obtain this information using the first model, with the 3
> treatments.
>
> _______________________________________________
> R-sig-mixed-models op r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>

	[[alternative HTML version deleted]]



More information about the R-sig-mixed-models mailing list